The inverse problem for a mixed type equation with a fractional order operator in a rectangular domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2021), pp. 29-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the inverse problem for a mixed type equation with the Riemann-Liouville and Caputo operator in a rectangular domain. A criterion for the uniqueness and existence of a solution to the inverse problem is established. The solution of the problem is constructed in the form of the sum of a series of eigenfunctions of the corresponding one-dimensional spectral problem. It is proved that the unique solvability of the inverse problem substantially depends on the choice of the boundary of a rectangular region. An example is constructed in which the inverse problem with homogeneous conditions has a nontrivial solution. Estimates are obtained that allow substantiating the convergence of series in the class of regular solutions of this equation and the stability of the solution of the inverse problem from boundary data.
Keywords: mixed type equation, fractional order operator, inverse problem, uniqueness criterion and existence, small denominators, sustainability.
@article{IVM_2021_3_a2,
     author = {B. I. Islomov and U. Sh. Ubaydullayev},
     title = {The inverse problem for a mixed type equation with a fractional order operator in a rectangular domain},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {29--46},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_3_a2/}
}
TY  - JOUR
AU  - B. I. Islomov
AU  - U. Sh. Ubaydullayev
TI  - The inverse problem for a mixed type equation with a fractional order operator in a rectangular domain
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 29
EP  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_3_a2/
LA  - ru
ID  - IVM_2021_3_a2
ER  - 
%0 Journal Article
%A B. I. Islomov
%A U. Sh. Ubaydullayev
%T The inverse problem for a mixed type equation with a fractional order operator in a rectangular domain
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 29-46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_3_a2/
%G ru
%F IVM_2021_3_a2
B. I. Islomov; U. Sh. Ubaydullayev. The inverse problem for a mixed type equation with a fractional order operator in a rectangular domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2021), pp. 29-46. http://geodesic.mathdoc.fr/item/IVM_2021_3_a2/

[1] Lundstrom B. N., Higgs M. H., Spain W. J., Fairhall A. L., “Fractional differentiation by neocortical pyramidal neurons”, Nat. Neurosci., 11 (2018), 1335–1342 | DOI

[2] Scalas E., “The application of continuos-time random walks in finance and economics”, Phys., 362:2 (2006), 225–239 | MR

[3] Vinagre B. M., Podlubny I., Hernandez A., Feliu V., “Some approximations of fractional order operators used in control theory and application”, Frac. Cal. Appl., 3:3 (2000), 231–248 | MR | Zbl

[4] Monje, Conception A., Fundamentals and Applications, Springer, 2010 | Zbl

[5] Dzharbashyan M. M., Nersesyan A. B., “Drobnye proizvodnye i zadachi Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. AN Arm SSR, Matem., 1:3 (1968), 3–28

[6] Dzharbashyan M. M., Integralnye preobrazovaniya i prestavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966

[7] Gorenflo R., Luchko Y. F., Umarov S. R., “On the Cauchy and multipoint problems for partial pseudo-differential equations of fractional order”, Fract. Calc. and Appl. Anal., 3 (2000), 249–275 | MR | Zbl

[8] Gorenflo R., Luchko Y. F., Mainardi F., “Wright fractions as scale-invariant solutions of the diffusion-wave equation”, J. Conput. And Appl. Math., 118 (2000), 175–191 | MR | Zbl

[9] Kilbas A. A., Marzan S. A., “Cauchy problem for differential equation with Caputo derivative”, Fract. Cale. Appl. Anal., 3:7 (2004), 297–321 | MR | Zbl

[10] Pskhu A. V., “Reshenie pervoi kraevoi zadachi dlya uravneniya diffuzii drobnogo i kontinualnogo poryadka”, Differents. uravneniya, 19 (2003), 1286–1289 | MR

[11] Pskhu A. V., Kraevye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi drobnogo i kontinualnogo poryadka, Nalchik, 2005

[12] Turmetov B., Nazarova K., “On Fractional Analogs of Dirichlet and Neumann Problems for the Laplace Equation”, Mediterranean J. Math., 2019 | MR

[13] Sabitov K. B., “Zadacha Dirikhle dlya uravnenii smeshannogo tipa v pryamougolnoi oblasti”, Dokl. RAN, 413:1 (2007), 23–26 | Zbl

[14] Sabitov K. B., “Kraevaya zadacha dlya uravnenii smeshannogo tipa tretego poryadka v pryamougolnoi oblasti”, Differents. uravneniya, 47:5 (2011), 705–713 | MR

[15] Sabitov K. B., “Zadacha Trikomi dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa v pryamougolnoi oblasti”, Matem. zametki, 86:2 (2009), 273–279 | Zbl

[16] Sabitov K. B., Safin E. M., “Obratnaya zadacha dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa v pryamougolnoi oblasti”, Izv. vuzov. Matem., 2010, no. 4, 55–62 | MR | Zbl

[17] Sabitov K. B., Safin E. M., “Obratnaya zadacha dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa”, Matem. zametki, 87:6 (2010), 907–918

[18] Sabitov K. B., Martemyanova N. V., “Obratnaya zadacha dlya uravneniya Lavrenteva-Bitsadze, svyazannaya s poiskom elementov pravoi chasti”, Izv. vuzov. Matem., 2017, no. 2, 44–57 | Zbl

[19] Karimov E. T., Akhatov J. S., “A boundary problem with integral gluing condition for a parabolic-hyperbolic equation involving the Caputo fractional derivative”, Electronic J. Diff. Equat., 14 (2014), 1–6 | MR

[20] Islomov B. I., Ubaidullaev U. Sh., “Kraevaya zadacha dlya uravneniya parabolo-giperbolicheskogo tipa s operatorom drobnogo poryadka v smysle Kaputo v pryamougolnoi oblasti”, Nauchn. vestn. Matem., 5 (2017), 25–30

[21] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i Tekhnika, Minsk, 1987

[22] Moiseev E. I., “O reshenii spektralnym metodom odnoi nelokalnoi zadachi”, Differents. uravneniya, 35:8 (1999), 1094–1100 | MR | Zbl

[23] Sabitov K. B., Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2013

[24] Khinchin A. Ya., Tsepnye drobi, Nauka, M., 1978 | MR

[25] Sabitov K. B., Pryamye i obratnye zadachi dlya uravnenii smeshannogo parabolo-giperbolicheskogo tipa, Nauka, M., 2016