Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_2_a7, author = {A. G. Petrov}, title = {Algorithm for construction of quadrature formulas with exponential convergence for linear operators acting on periodic functions}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {86--92}, publisher = {mathdoc}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_2_a7/} }
TY - JOUR AU - A. G. Petrov TI - Algorithm for construction of quadrature formulas with exponential convergence for linear operators acting on periodic functions JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 86 EP - 92 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_2_a7/ LA - ru ID - IVM_2021_2_a7 ER -
%0 Journal Article %A A. G. Petrov %T Algorithm for construction of quadrature formulas with exponential convergence for linear operators acting on periodic functions %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2021 %P 86-92 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2021_2_a7/ %G ru %F IVM_2021_2_a7
A. G. Petrov. Algorithm for construction of quadrature formulas with exponential convergence for linear operators acting on periodic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2021), pp. 86-92. http://geodesic.mathdoc.fr/item/IVM_2021_2_a7/
[1] Krylov V. I., Priblizhennoe vychislenie integralov, Fizmatlit, M., 1967
[2] Kress R., Linear integral equation, Springer, 1999 | MR
[3] Babenko K. I., Osnovy chislennogo analiza, NITs Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2002
[4] Petrov A. G., “Chislennye skhemy bez nasyscheniya dlya periodicheskikh funktsii”, Dokl. RAN, 481:4 (2018), 362–366 | Zbl
[5] Petrov A. G., Smolyanin V. G., “Raschet profilya kapillyarno-gravitatsionnoi volny na poverkhnosti tyazheloi zhidkosti konechnoi glubiny”, Vestn. MGU, 1991, no. 2, 92–96 | Zbl
[6] Petrov A. G., “Kvadraturnye formuly dlya periodicheskikh funktsii i ikh primenenie v metode granichnykh elementov”, ZhVM i MF, 48:8 (2008), 1344–1361 | MR | Zbl
[7] Babenko K. I., “Neskolko zamechanii o diskretizatsii ellipticheskikh zadach”, Dokl. AN SSSR, 221 (1975), 11–14 | Zbl
[8] Belykh V. N., “Sverkhskhodyaschiesya nenasyschaemye algoritmy chislennogo resheniya uravneniya Laplasa”, Sib. zhurn. industr. matem., 5:2 (2002), 36–52 | MR | Zbl
[9] Algazin S. D., “Chislennye algoritmy bez nasyscheniya dlya uravneniya Shredingera atoma vodoroda”, Vychisl. metody i programmirovanie, 19 (2018), 215–218
[10] Orszag S. A., Gotlib D., Numerical Analysis of Spectral Methods. Theory and Applications, Society for industrial and applied mathematics, Philadelphia, Pennsylvania 19103, 1977 | MR | Zbl
[11] Kalitkin N. N., Kolganov S. A., “Funktsii Fermi–Diraka. Pryamoe vychislenie funktsii”, Preprinty IPM im. M.V. Keldysha, 2018, 235, 29 pp.
[12] Bari N. K., Trigonometricheskie ryady, Fizmatlit, M., 1961
[13] Petrov A. G., Analiticheskaya gidrodinamika, Fizmatlit, M., 2009
[14] Vekua I. N., Novye metody resheniya ellipticheskikh uravnenii, Fizmatlit, M., 1948 | MR
[15] Belykh V. N., “K probleme konstruirovaniya nenasyschaemykh kvadraturnykh formul na otrezke”, Matem. sb., 210:1 (2019), 27–62 | MR | Zbl