Algorithm for construction of quadrature formulas with exponential convergence for linear operators acting on periodic functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2021), pp. 86-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

The algorithm of the derivation of quadrature formulas for the calculation of linear operators acting on periodic functions is presented. For analytic functions, the order of accuracy of quadrature formulas increases indefinitely with the number of grid nodal points increasing. With sufficiently general restrictions on the kernels of linear operators, an exponential valuation of the quadrature formula has been proved. As examples, the quadrature formulas for the calculation of integral operators with logarithmic singularities used in the boundary element method to derive superconvergent numerical schemes for solving boundary value problems of harmonic and biharmonic equations on the plane, have been obtained.
Mots-clés : quadrature formula
Keywords: linear operator, periodic function, Fourier series, harmonic and biharmonic functions, boundary value problem.
@article{IVM_2021_2_a7,
     author = {A. G. Petrov},
     title = {Algorithm for construction of quadrature formulas with exponential convergence for linear operators acting on periodic functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--92},
     publisher = {mathdoc},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_2_a7/}
}
TY  - JOUR
AU  - A. G. Petrov
TI  - Algorithm for construction of quadrature formulas with exponential convergence for linear operators acting on periodic functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 86
EP  - 92
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_2_a7/
LA  - ru
ID  - IVM_2021_2_a7
ER  - 
%0 Journal Article
%A A. G. Petrov
%T Algorithm for construction of quadrature formulas with exponential convergence for linear operators acting on periodic functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 86-92
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_2_a7/
%G ru
%F IVM_2021_2_a7
A. G. Petrov. Algorithm for construction of quadrature formulas with exponential convergence for linear operators acting on periodic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2021), pp. 86-92. http://geodesic.mathdoc.fr/item/IVM_2021_2_a7/

[1] Krylov V. I., Priblizhennoe vychislenie integralov, Fizmatlit, M., 1967

[2] Kress R., Linear integral equation, Springer, 1999 | MR

[3] Babenko K. I., Osnovy chislennogo analiza, NITs Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2002

[4] Petrov A. G., “Chislennye skhemy bez nasyscheniya dlya periodicheskikh funktsii”, Dokl. RAN, 481:4 (2018), 362–366 | Zbl

[5] Petrov A. G., Smolyanin V. G., “Raschet profilya kapillyarno-gravitatsionnoi volny na poverkhnosti tyazheloi zhidkosti konechnoi glubiny”, Vestn. MGU, 1991, no. 2, 92–96 | Zbl

[6] Petrov A. G., “Kvadraturnye formuly dlya periodicheskikh funktsii i ikh primenenie v metode granichnykh elementov”, ZhVM i MF, 48:8 (2008), 1344–1361 | MR | Zbl

[7] Babenko K. I., “Neskolko zamechanii o diskretizatsii ellipticheskikh zadach”, Dokl. AN SSSR, 221 (1975), 11–14 | Zbl

[8] Belykh V. N., “Sverkhskhodyaschiesya nenasyschaemye algoritmy chislennogo resheniya uravneniya Laplasa”, Sib. zhurn. industr. matem., 5:2 (2002), 36–52 | MR | Zbl

[9] Algazin S. D., “Chislennye algoritmy bez nasyscheniya dlya uravneniya Shredingera atoma vodoroda”, Vychisl. metody i programmirovanie, 19 (2018), 215–218

[10] Orszag S. A., Gotlib D., Numerical Analysis of Spectral Methods. Theory and Applications, Society for industrial and applied mathematics, Philadelphia, Pennsylvania 19103, 1977 | MR | Zbl

[11] Kalitkin N. N., Kolganov S. A., “Funktsii Fermi–Diraka. Pryamoe vychislenie funktsii”, Preprinty IPM im. M.V. Keldysha, 2018, 235, 29 pp.

[12] Bari N. K., Trigonometricheskie ryady, Fizmatlit, M., 1961

[13] Petrov A. G., Analiticheskaya gidrodinamika, Fizmatlit, M., 2009

[14] Vekua I. N., Novye metody resheniya ellipticheskikh uravnenii, Fizmatlit, M., 1948 | MR

[15] Belykh V. N., “K probleme konstruirovaniya nenasyschaemykh kvadraturnykh formul na otrezke”, Matem. sb., 210:1 (2019), 27–62 | MR | Zbl