New sufficient conditions for the computation of generalized eigenvalues
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2021), pp. 74-78
Voir la notice de l'article provenant de la source Math-Net.Ru
The purpose of this paper is to give new sufficient conditions for solving numerically a generalized spectrum problem known in the literature as the problem of spectrum approximation of quadratic operator pencils. The new sufficient conditions obtained here are weaker than the norm convergence and the collectively compact convergence, thus they extend some previous results existing in the literature.
Keywords:
generalized spectrum, generalized eigenvalue, spectrum of an operator pencil.
@article{IVM_2021_2_a5,
author = {A. Khellaf and W. Merchela and H. Guebbai},
title = {New sufficient conditions for the computation of generalized eigenvalues},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {74--78},
publisher = {mathdoc},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2021_2_a5/}
}
TY - JOUR AU - A. Khellaf AU - W. Merchela AU - H. Guebbai TI - New sufficient conditions for the computation of generalized eigenvalues JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 74 EP - 78 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_2_a5/ LA - ru ID - IVM_2021_2_a5 ER -
A. Khellaf; W. Merchela; H. Guebbai. New sufficient conditions for the computation of generalized eigenvalues. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2021), pp. 74-78. http://geodesic.mathdoc.fr/item/IVM_2021_2_a5/