New sufficient conditions for the computation of generalized eigenvalues
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2021), pp. 74-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to give new sufficient conditions for solving numerically a generalized spectrum problem known in the literature as the problem of spectrum approximation of quadratic operator pencils. The new sufficient conditions obtained here are weaker than the norm convergence and the collectively compact convergence, thus they extend some previous results existing in the literature.
Keywords: generalized spectrum, generalized eigenvalue, spectrum of an operator pencil.
@article{IVM_2021_2_a5,
     author = {A. Khellaf and W. Merchela and H. Guebbai},
     title = {New sufficient conditions for the computation of generalized eigenvalues},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {74--78},
     publisher = {mathdoc},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_2_a5/}
}
TY  - JOUR
AU  - A. Khellaf
AU  - W. Merchela
AU  - H. Guebbai
TI  - New sufficient conditions for the computation of generalized eigenvalues
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 74
EP  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_2_a5/
LA  - ru
ID  - IVM_2021_2_a5
ER  - 
%0 Journal Article
%A A. Khellaf
%A W. Merchela
%A H. Guebbai
%T New sufficient conditions for the computation of generalized eigenvalues
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 74-78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_2_a5/
%G ru
%F IVM_2021_2_a5
A. Khellaf; W. Merchela; H. Guebbai. New sufficient conditions for the computation of generalized eigenvalues. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2021), pp. 74-78. http://geodesic.mathdoc.fr/item/IVM_2021_2_a5/

[1] Engstrom C., Richter M., “On the spectrum of an operator pencil with applications to wave propagation in periodic and frequency dependent materials”, SIAM J. Appl. Math., 70:1 (2009), 231–247 | DOI | MR | Zbl

[2] Khellaf A., Guebbai H., Lemita S., Aissaoui M. Z., “On the Pseudo-spectrum of Operator Pencils”, Asian European J. Math., 2019 | DOI | MR | Zbl

[3] Khellaf A., Guebbai H., Lemita S., Aissaoui M. Z., “Eigenvalues computation by the generalized spectrum method of Schrödinger's operator”, Comput. and Appl. Math., 37:5 (2018), 5965–5980 | DOI | MR | Zbl

[4] Tisseur F., Meerbergen K., “The quadratic eigenvalue problem”, SIAM Rev., 43:2 (2001), 235–286 | DOI | MR | Zbl

[5] Markus A. S., Introduction to the spectral theory of polynomial operator pencils, Translations of Mathematical Monographs, 71, American Math. Soc., Prov., RI, 1988 | MR | Zbl

[6] Moller M., Pivovarchik V., Spectral Theory of Operator Pencils, Hermite–Biehler Functions and their Applications, Birkhäuser, 2015 | MR | Zbl

[7] Ahues M., Largillier A., Limaye B. V., Spectral computations for bounded operators, Chapman and Hall/CRC, New York, 2001 | MR | Zbl

[8] Guebbai H., “Generalized spectrum approximation and numerical computation of Eigenvalues for Schrödinger's Operators”, Lobachevskii J. Math., 34 (2013), 45–60 | DOI | MR | Zbl

[9] Khellaf A., “Novye dostatochnye usloviya obobschennogo spektralnogo podkhoda dlya resheniya spektralnogo zagryazneniya”, Vestn. Tambovsk. un-ta. Ser. estestvennye i tekhn. nauki, 23:124 (2018), 595–604