Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_2_a5, author = {A. Khellaf and W. Merchela and H. Guebbai}, title = {New sufficient conditions for the computation of generalized eigenvalues}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {74--78}, publisher = {mathdoc}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_2_a5/} }
TY - JOUR AU - A. Khellaf AU - W. Merchela AU - H. Guebbai TI - New sufficient conditions for the computation of generalized eigenvalues JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 74 EP - 78 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_2_a5/ LA - ru ID - IVM_2021_2_a5 ER -
A. Khellaf; W. Merchela; H. Guebbai. New sufficient conditions for the computation of generalized eigenvalues. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2021), pp. 74-78. http://geodesic.mathdoc.fr/item/IVM_2021_2_a5/
[1] Engstrom C., Richter M., “On the spectrum of an operator pencil with applications to wave propagation in periodic and frequency dependent materials”, SIAM J. Appl. Math., 70:1 (2009), 231–247 | DOI | MR | Zbl
[2] Khellaf A., Guebbai H., Lemita S., Aissaoui M. Z., “On the Pseudo-spectrum of Operator Pencils”, Asian European J. Math., 2019 | DOI | MR | Zbl
[3] Khellaf A., Guebbai H., Lemita S., Aissaoui M. Z., “Eigenvalues computation by the generalized spectrum method of Schrödinger's operator”, Comput. and Appl. Math., 37:5 (2018), 5965–5980 | DOI | MR | Zbl
[4] Tisseur F., Meerbergen K., “The quadratic eigenvalue problem”, SIAM Rev., 43:2 (2001), 235–286 | DOI | MR | Zbl
[5] Markus A. S., Introduction to the spectral theory of polynomial operator pencils, Translations of Mathematical Monographs, 71, American Math. Soc., Prov., RI, 1988 | MR | Zbl
[6] Moller M., Pivovarchik V., Spectral Theory of Operator Pencils, Hermite–Biehler Functions and their Applications, Birkhäuser, 2015 | MR | Zbl
[7] Ahues M., Largillier A., Limaye B. V., Spectral computations for bounded operators, Chapman and Hall/CRC, New York, 2001 | MR | Zbl
[8] Guebbai H., “Generalized spectrum approximation and numerical computation of Eigenvalues for Schrödinger's Operators”, Lobachevskii J. Math., 34 (2013), 45–60 | DOI | MR | Zbl
[9] Khellaf A., “Novye dostatochnye usloviya obobschennogo spektralnogo podkhoda dlya resheniya spektralnogo zagryazneniya”, Vestn. Tambovsk. un-ta. Ser. estestvennye i tekhn. nauki, 23:124 (2018), 595–604