On invariants and invariant hypersurfaces of complex discrete dynamical systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2021), pp. 44-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

First, we introduce the concept of a completely solvable complex real holomorphic system of bigolomorphisms and prove that it forms a multidimensional discrete dynamical system. Then the functional invariants are defined and we find the dimension of the basis of nondegenerate absolute invariants for the class of systems of general position under consideration. Finally, we obtain signs of the limitation of the number of compact invariant hypersurfaces for auxiliary real systems of diffeomorphisms, and on their basis we obtain signs of the limitation of the number of compact invariant hypersurfaces for complex real holomorphic discrete dynamical systems.
Keywords: real holomorphic function of the complex variable, discrete dynamical system, functional invariant
Mots-clés : invariant hypersurface.
@article{IVM_2021_2_a3,
     author = {V. Yu. Tyshchenko},
     title = {On invariants and invariant hypersurfaces of complex discrete dynamical systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {44--55},
     publisher = {mathdoc},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_2_a3/}
}
TY  - JOUR
AU  - V. Yu. Tyshchenko
TI  - On invariants and invariant hypersurfaces of complex discrete dynamical systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 44
EP  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_2_a3/
LA  - ru
ID  - IVM_2021_2_a3
ER  - 
%0 Journal Article
%A V. Yu. Tyshchenko
%T On invariants and invariant hypersurfaces of complex discrete dynamical systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 44-55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_2_a3/
%G ru
%F IVM_2021_2_a3
V. Yu. Tyshchenko. On invariants and invariant hypersurfaces of complex discrete dynamical systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2021), pp. 44-55. http://geodesic.mathdoc.fr/item/IVM_2021_2_a3/

[1] Sahadevan R., “On invariants for difference equations of rational form”, J. Math. Anal. Appl., 233 (1999), 498–507 | DOI | MR | Zbl

[2] Gasull A., Manosa V., “Darboux theory of integrability for discrete dynamical systems”, J. Diff. Equat. and Appl., 8:12 (2002), 1171–1191 | DOI | MR | Zbl

[3] Tyschenko V. Yu., “Ob invariantakh diskretnykh dinamicheskikh sistem”, Differents. uravneniya, 46:5 (2010), 752–755 | MR

[4] Tyschenko V. Yu., “Bazis absolyutnykh invariantov vpolne razreshimykh lineinykh i drobno–lineinykh diskretnykh dinamicheskikh sistem”, Differents. uravneniya, 48:5 (2012), 758–760

[5] Bajo I., “Invariants for certain discrete dynamical systems given by rational mappings”, Qualitative Theory of Dynamical Systems, 16:3 (2017), 467–490 | DOI | MR | Zbl

[6] Morozov A. D., Dragunov T. N., Vizualizatsiya i analiz invariantnykh mnozhestv dinamicheskikh sistem, Nauchno-izdat. tsentr «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2003 | MR

[7] Tyschenko V. Yu., “O kompaktnykh invariantnykh giperpoverkhnostyakh diskretnykh dinamicheskikh sistem”, Differents. uravneniya, 42:7 (2008), 1005–1006

[8] Kanatnikov A. N., Krischenko A. P., Invariantnye kompakty dinamicheskikh sistem, MGTU im. N.E. Baumana, M., 2011

[9] Krischenko A. P., “Funktsionalnyi metod lokalizatsii invariantnykh kompaktov v diskretnykh sistemakh”, Differents. uravneniya, 46:11 (2011), 1601–1611

[10] Kanatnikov A. N., “Ustoichivost polozhenii ravnovesiya diskretnykh sistem i lokalizatsiya invariantnykh kompaktov”, Differents. uravneniya, 54:11 (2018), 1440–1444 | Zbl

[11] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Giperbolicheskie attraktory diffeomorfizmov evklidova prostranstva”, Differents. uravneniya, 55:4 (2019), 473–485 | Zbl

[12] Gaishun I. V., Vpolne razreshimye mnogomernye differentsialnye uravneniya, URSS, M., 2004

[13] Nemytskii V. V., “K teorii orbit obschikh dinamicheskikh sistem”, Matem. sb., 23:2 (1948), 161–186 | MR

[14] Nemytskii V. V., “Obobscheniya teorii dinamicheskikh sistem”, UMN, 5:3 (1950), 47–59 | MR

[15] Postnikov M. M., Lektsii po geometrii. Semestr II. Lineinaya algebra, Nauka, M., 1986 | MR

[16] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya: Metody i prilozheniya, Nauka, M., 1986 | MR

[17] Zverovich E. I., Veschestvennyi i kompleksnyi analiz, Kn. 4, v. 6, Teoriya analiticheskikh funktsii kompleksnogo peremennogo, Vysh. shk., Minsk, 2008