Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_2_a2, author = {E. N. Sattorov and F. E. Ermamatova}, title = {On continuation of solutions of generalized {Cauchy--Riemann} system in an unbounded subdomain of multidimensional space}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {27--43}, publisher = {mathdoc}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_2_a2/} }
TY - JOUR AU - E. N. Sattorov AU - F. E. Ermamatova TI - On continuation of solutions of generalized Cauchy--Riemann system in an unbounded subdomain of multidimensional space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 27 EP - 43 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_2_a2/ LA - ru ID - IVM_2021_2_a2 ER -
%0 Journal Article %A E. N. Sattorov %A F. E. Ermamatova %T On continuation of solutions of generalized Cauchy--Riemann system in an unbounded subdomain of multidimensional space %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2021 %P 27-43 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2021_2_a2/ %G ru %F IVM_2021_2_a2
E. N. Sattorov; F. E. Ermamatova. On continuation of solutions of generalized Cauchy--Riemann system in an unbounded subdomain of multidimensional space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2021), pp. 27-43. http://geodesic.mathdoc.fr/item/IVM_2021_2_a2/
[1] Sattorov E. N., Ermamatova F. E., “Formula Karlemana dlya reshenii obobschennoi sistemy Koshi–Rimana v mnogomernoi prostranstvennoi oblasti”, Sovr. matem. Fundament. napravleniya, 65, no. 1, 2019, 95–108 | MR
[2] Obolashvili E. I., “Obobschennaya sistema Koshi–Rimana v mnogomernom evklidovom prostranstve”, Sb. tr. konf. «Kompleksnyi analiz» (GDR, Gale, 1976)
[3] Obolashvili E. I., “Obobschennaya sistema Koshi–Rimana v mnogomernom prostranstve”, Tr. Tbilissk. Matem. In-ta, 58 (1978), 168–173
[4] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974
[5] Vladimirov V. S., Volovich I. V., “Superanaliz I. Differentsialnoe ischislenie”, Teor. i matem. fizika, 59:1 (1984), 3–27 | MR | Zbl
[6] Vladimirov V. S., Volovich I. V., “Superanaliz. II. Integralnoe ischislenie”, Teor. i matem. fizika, 60:2 (1984), 169–198 | MR | Zbl
[7] Gürlebeck K., Spröbig W., Quaternionic analysis and elliptic boundary value problems, ISNM, 89, Birhauser, L.; Birhauser, Basel–Boston–Berlin, 1990 | MR | Zbl
[8] Brackx F., Delanghe K., Sommen F., Clifford analysis, Research Notes in Mathematics, 76, Pitman, L., 1982 | MR | Zbl
[9] Adamar Zh., Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978
[10] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, VTs SO AN SSSR, Novosibirsk, 1962
[11] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR
[12] Lattes R., Lions Zh. L., Metod kvaziobrascheniya i ego prilozheniya, Mir, M., 1970
[13] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, DAN SSSR, 151:3 (1963), 501–504 | Zbl
[14] Ivanov V. K., “Zadacha Koshi dlya uravneniya Laplasa v beskonechnoi polose”, Differents. uravneniya, 1:1 (1965), 131–136 | MR | Zbl
[15] Lavrentev M. M., “O zadache Koshi dlya lineinykh ellipticheskikh uravnenii vtorogo poryadka”, DAN SSSR, 112:2 (1957), 195–197 | Zbl
[16] Mergelyan S. N., “Garmonicheskaya approksimatsiya i priblizhennoe reshenie zadachi Koshi dlya uravneniya Laplasa”, UMN, 11:5 (1956), 3–26 | MR
[17] Yarmukhamedov Sh., “O zadache Koshi dlya uravneniya Laplasa”, DAN SSSR, 235:2 (1977), 281–283 | MR | Zbl
[18] Yarmukhamedov Sh., “O prodolzhenii resheniya uravneniya Gelmgoltsa”, DAN RAN, 357:3 (1997), 320–323 | MR | Zbl
[19] Aizenberg L. A., Tarkhanov N. N., “Abstraktnaya formula Karlemana”, DAN SSSR, 298:6 (1988), 1292–1296
[20] Tarkhanov N. N., “O matritse Karlemana dlya ellipticheskikh sistem”, DAN SSSR, 284:2 (1985), 294–297 | MR | Zbl
[21] Aizenberg L. A., Formuly Karlemana v kompleksnom analize. Pervye prilozheniya, Nauka, Novosibirsk, 1990 | MR
[22] Tarkhanov N. N., Cauchy problem for solutions of elliptic equations, Math. Topics, 7, Akad. Verl., Berlin, 1995 | MR | Zbl
[23] Makhmudov O. I., “Zadacha Koshi dlya sistemy uravnenii teorii uprugosti i termouprugosti v prostranstve”, Izv. vuzov. Matem., 2004, no. 2, 43–53 | Zbl
[24] Makhmudov O., Niyozov I., Tarkhanov N., “The Cauchy problem of couple-stress elasticity”, Contemporary Math., 455, 2008, 297–310 | DOI | MR | Zbl
[25] Sattorov E. N., Mardonov Dzh.A., “Zadacha Koshi dlya sistemy uravnenii Maksvella”, Sib. matem. zhurn., 44:4 (2003), 851–861 | MR | Zbl
[26] Sattorov E. N., “Regulyarizatsiya resheniya zadachi Koshi dlya obobschennoi sistemy Moisila–Teodoresku”, Differents. uravneniya, 44:8 (2008), 1100–1110 | MR | Zbl
[27] Sattorov E. N., “O prodolzhenii reshenii obobschennoi sistemy Koshi–Rimana v prostranstve”, Matem. zametki, 85:5 (2009), 768–781 | MR | Zbl
[28] Sattorov E. N., “Regulyarizatsiya resheniya zadachi Koshi dlya sistemy uravnenii Maksvella v beskonechnoi oblasti”, Matem. zametki, 86:6 (2009), 445–455 | MR | Zbl
[29] Sattorov E. N., “O vosstanovlenii reshenii obobschennoi sistemy Moisila–Teodoresku v prostranstvennoi oblasti po ikh znacheniyam na kuske granitsy”, Izv. vuzov. Matem., 2011, no. 1, 72–84 | MR | Zbl
[30] Yarmukhamedov Sh., “Ob analiticheskom prodolzhenii golomorfnogo vektora po ego granichnym znacheniyam na kuske granitsy”, Izv. AN UzSSR. Ser. fiz.-matem. nauk, 6 (1980), 34–40
[31] Makhmudov K. O., Makhmudov O. I., Tarkhanov N., “Equations of Maxwell Type”, J. Math. Anal. and App., 378 (2011), 64–75 | DOI | MR | Zbl
[32] Sattorov E. N., Ermamatova Z. E., “O vosstanovlenii reshenii odnorodnoi sistemy uravnenii Maksvella v oblasti po ix znacheniyam na kuske granitsy”, Izv. vuzov. Matem., 2 (2019), 39–48 | MR | Zbl
[33] Nikoforov L. F., Uvarov V. B., Osnovy teorii spetsialnykh funktsii, Nauka, M., 1974
[34] Trikomi F., Lektsii po uravneniyam v chastnykh proizvodnykh, In-lit, M., 1957