Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_2_a1, author = {K. S. Lapin}, title = {Vector {Lyapunov} functions, complete sets of guiding functions, and the existence of {Poisson} bounded solutions}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {19--26}, publisher = {mathdoc}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_2_a1/} }
TY - JOUR AU - K. S. Lapin TI - Vector Lyapunov functions, complete sets of guiding functions, and the existence of Poisson bounded solutions JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 19 EP - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_2_a1/ LA - ru ID - IVM_2021_2_a1 ER -
%0 Journal Article %A K. S. Lapin %T Vector Lyapunov functions, complete sets of guiding functions, and the existence of Poisson bounded solutions %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2021 %P 19-26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2021_2_a1/ %G ru %F IVM_2021_2_a1
K. S. Lapin. Vector Lyapunov functions, complete sets of guiding functions, and the existence of Poisson bounded solutions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2021), pp. 19-26. http://geodesic.mathdoc.fr/item/IVM_2021_2_a1/
[1] Matrosov V. M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001
[2] Krasnoselskii M. A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966 | MR
[3] Zvyagin V. G., Kornev S. V., Metod napravlyayuschikh funktsii i ego modifikatsii, LENAND, M., 2018
[4] Lapin K. S., “Ravnomernaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Differents. uravneniya, 54:1 (2018), 40–50 | Zbl
[5] Lapin K. S., “Ogranichennost v predele po Puassonu reshenii sistem differentsialnykh uravnenii i funktsii Lyapunova”, Matem. zametki, 103:2 (2018), 223–235 | Zbl
[6] Lapin K. S., “Vysshie proizvodnye funktsii Lyapunova i ogranichennost v predele po Puassonu reshenii sistem differentsialnykh uravnenii”, Sibirsk. matem. zhurn., 59:6 (2018), 1383–1388 | MR | Zbl
[7] Lapin K. S., “Vektor-funktsii Lyapunova i ogranichennost v predele po Puassonu reshenii sistem differentsialnykh uravnenii”, Matem. zametki, 104:1 (2018), 73–86 | Zbl
[8] Lapin K. S., “Totalnaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Matem. zametki, 104:2 (2018), 243–254 | Zbl
[9] Lapin K. S., “Vysshie proizvodnye funktsii Lyapunova i totalnaya ogranichennost reshenii po Puassonu”, Izv. vuzov. Matem., 2019, no. 8, 21–30 | Zbl
[10] Lapin K. S., “Totalnaya ogranichennost po Puassonu reshenii ${\mathcal P}$–vozmuschennykh slozhnykh sistem differentsialnykh uravnenii”, Izv. vuzov. Matem., 2019, no. 10, 62–74 | Zbl
[11] Yoshizawa T., “Liapunovs function and boundedness of solutions”, Funkcialaj Ekvacioj, 2 (1959), 95–142 | MR | Zbl
[12] Rumyantsev V. V., Oziraner A. S., Ustoichivost i stabilizatsiya dvizheniya otnositelno chasti peremennykh, Nauka, M., 1987 | MR
[13] Mischenko A. S., Fomenko A. T., Kurs differentsialnoi geometrii i topologii, Izd-vo Mosk. un-ta, M., 1980 | MR
[14] Dold A., Lektsii po algebraicheskoi topologii, Mir, M., 1976
[15] Kartashev A. P., Rozhdestvenskii B. L., Obyknovennye differentsialnye uravneniya i osnovy variatsionnogo ischisleniya, Nauka, M., 1980 | MR