Vector Lyapunov functions, complete sets of guiding functions, and the existence of Poisson bounded solutions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2021), pp. 19-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the synthesis of the method of vector Lyapunov functions and the method of complete sets of guiding functions we obtain sufficient conditions for the existence of Poisson bounded solutions, as well as sufficient conditions of the existence of partially Poisson bounded solutions of systems of differential equations.
Keywords: vector Lyapunov function, rotation of the vector field, guiding function, complete sets of guiding functions, Poisson boundedness of solution, partial Poisson boundedness of solution.
@article{IVM_2021_2_a1,
     author = {K. S. Lapin},
     title = {Vector {Lyapunov} functions, complete sets of guiding functions, and the existence of {Poisson} bounded solutions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {19--26},
     publisher = {mathdoc},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_2_a1/}
}
TY  - JOUR
AU  - K. S. Lapin
TI  - Vector Lyapunov functions, complete sets of guiding functions, and the existence of Poisson bounded solutions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 19
EP  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_2_a1/
LA  - ru
ID  - IVM_2021_2_a1
ER  - 
%0 Journal Article
%A K. S. Lapin
%T Vector Lyapunov functions, complete sets of guiding functions, and the existence of Poisson bounded solutions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 19-26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_2_a1/
%G ru
%F IVM_2021_2_a1
K. S. Lapin. Vector Lyapunov functions, complete sets of guiding functions, and the existence of Poisson bounded solutions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2021), pp. 19-26. http://geodesic.mathdoc.fr/item/IVM_2021_2_a1/

[1] Matrosov V. M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001

[2] Krasnoselskii M. A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966 | MR

[3] Zvyagin V. G., Kornev S. V., Metod napravlyayuschikh funktsii i ego modifikatsii, LENAND, M., 2018

[4] Lapin K. S., “Ravnomernaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Differents. uravneniya, 54:1 (2018), 40–50 | Zbl

[5] Lapin K. S., “Ogranichennost v predele po Puassonu reshenii sistem differentsialnykh uravnenii i funktsii Lyapunova”, Matem. zametki, 103:2 (2018), 223–235 | Zbl

[6] Lapin K. S., “Vysshie proizvodnye funktsii Lyapunova i ogranichennost v predele po Puassonu reshenii sistem differentsialnykh uravnenii”, Sibirsk. matem. zhurn., 59:6 (2018), 1383–1388 | MR | Zbl

[7] Lapin K. S., “Vektor-funktsii Lyapunova i ogranichennost v predele po Puassonu reshenii sistem differentsialnykh uravnenii”, Matem. zametki, 104:1 (2018), 73–86 | Zbl

[8] Lapin K. S., “Totalnaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Matem. zametki, 104:2 (2018), 243–254 | Zbl

[9] Lapin K. S., “Vysshie proizvodnye funktsii Lyapunova i totalnaya ogranichennost reshenii po Puassonu”, Izv. vuzov. Matem., 2019, no. 8, 21–30 | Zbl

[10] Lapin K. S., “Totalnaya ogranichennost po Puassonu reshenii ${\mathcal P}$–vozmuschennykh slozhnykh sistem differentsialnykh uravnenii”, Izv. vuzov. Matem., 2019, no. 10, 62–74 | Zbl

[11] Yoshizawa T., “Liapunovs function and boundedness of solutions”, Funkcialaj Ekvacioj, 2 (1959), 95–142 | MR | Zbl

[12] Rumyantsev V. V., Oziraner A. S., Ustoichivost i stabilizatsiya dvizheniya otnositelno chasti peremennykh, Nauka, M., 1987 | MR

[13] Mischenko A. S., Fomenko A. T., Kurs differentsialnoi geometrii i topologii, Izd-vo Mosk. un-ta, M., 1980 | MR

[14] Dold A., Lektsii po algebraicheskoi topologii, Mir, M., 1976

[15] Kartashev A. P., Rozhdestvenskii B. L., Obyknovennye differentsialnye uravneniya i osnovy variatsionnogo ischisleniya, Nauka, M., 1980 | MR