Some generalized Hadamard--type inequalities via fractional integrals
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2021), pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study presents some generalized inequalities of the Hermite–Hadamard type using fractional Riemann–Liouville integrals for the class of $s$-convex functions in the first and second sense. The results are obtained for functions whose second derivatives are convex and take values at intermediate points of the interval. It is shown that with this approach, the absolute error of Hadamard–type inequalities decreases by a multiple of the number of intermediate points. In a particular case, the obtained upper bounds for the Hadamard inequality coincide with those in the literature.
@article{IVM_2021_2_a0,
     author = {B. Bayraktar and A. H. Attaev and V. Ch. Kudaev},
     title = {Some generalized {Hadamard--type} inequalities via fractional integrals},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--18},
     publisher = {mathdoc},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_2_a0/}
}
TY  - JOUR
AU  - B. Bayraktar
AU  - A. H. Attaev
AU  - V. Ch. Kudaev
TI  - Some generalized Hadamard--type inequalities via fractional integrals
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 3
EP  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_2_a0/
LA  - ru
ID  - IVM_2021_2_a0
ER  - 
%0 Journal Article
%A B. Bayraktar
%A A. H. Attaev
%A V. Ch. Kudaev
%T Some generalized Hadamard--type inequalities via fractional integrals
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 3-18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_2_a0/
%G ru
%F IVM_2021_2_a0
B. Bayraktar; A. H. Attaev; V. Ch. Kudaev. Some generalized Hadamard--type inequalities via fractional integrals. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2021), pp. 3-18. http://geodesic.mathdoc.fr/item/IVM_2021_2_a0/

[1] Dragomir S. S., Pearce C. E. M., Selected topics on Hermite – Hadamard inequalities and applications, RGMIA Monographs, Victoria Univ., 2000 www.sta.vu.edu.au/RGMIA/monographs/hermite-hadamard.html

[2] Toader G., Toader S., “A hierarchy of logarithmic convexity of functions”, Annals of the T. Popoviciu seminar of functional equat., Approximation and Convexity, 7, 2009, 147–154 | MR | Zbl

[3] Breckner W. W., “Stetigkeitsaussagen für Eine Klasse Verallgemeinerter Konvexer Funktionen in Topologischen Linearen Rumen”, Publ. Inst. Math., 23:37 (1978), 13–20 | MR | Zbl

[4] Hadamard J., “Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann”, J. Math. Pures Appl., 58 (1893), 171–215

[5] Mitrinovic D. S. Peĉariĉ J., Fink A. M., Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993 | MR | Zbl

[6] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[7] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[8] Mohammed P. O., Hamasalh F. K., “New conformable fractional integral inequalities of Hermite–Hadamard type for convex functions”, Symmetry, 11:2 (2019), 263 | DOI | MR | Zbl

[9] Napoles Valdes J. E., Rodriguez J.M, Sigarreta J. M., “New Hermite–Hadamard type inequalities involving non-conformable integral operators”, Symmetry, 11:9 (2019), 1108 | DOI

[10] Miller S., Ross B., An introduction to the fractional calculus and fractional differential equations, John Wiley Sons, USA, 1993 | MR | Zbl

[11] Sarıkaya M. Z., Set E., Yaldiz H., Başak N., “Hermite–Hadamard's inequalities for fractional integrals and related fractional inequalities”, Math. and Comput. Model., 57 (2013), 2403–2407 | DOI | MR | Zbl

[12] Gürbüz M., Öztürk O., “Inequalities generated with Riemann-Liouville fractional integral operator”, TWMS J. Appl. and Eng. Math., 9:1 (2019), 91–100 | MR

[13] Latif M. A., Dragomir S. S., “New inequalities of Hermite–Hadamard type for functions whose derivatives in absolute value are convex with applications”, Acta Univ. M. Belii, Ser. Math., 21 (2013), 27–42 | MR | Zbl

[14] Bayraktar B., “Some new generalizations of Hadamard–type Midpoint inequalities involving fractional integrals”, Probl. Anal. Issues Anal., 9 (2020), 66–82 | DOI | MR | Zbl

[15] Ekinci A., Őzdemir M. E., “Some new integral inequalities via Riemann–Liouville integral operators”, Appl. Comput. Math., 18:3 (2019), 288–295 | MR | Zbl

[16] Bayraktar B., “Some integral inequalities of Hermite–Hadamard type for differentiable $(s,m)$–convex functions via fractional integrals”, TWMS J. App. Eng. Math., 10:3 (2020), 625–637 | MR

[17] Bayraktar B., “Some new inequalities of Hermite–Hadamard type for differentiable Godunova–Levin functions via fractional integrals”, Konuralp J. Math., 8:1 (2020), 91–96 | MR

[18] Ocak A. A., Gürbüz M., Set E., “Integral Inequalities for Different Kinds of Convex Functions Involving Riemann–Liouville Fractional Integrals”, Yayın Yeri:Karaelmas Fen ve Mü hendislik Dergisi, 7:1 (2017), 140–144

[19] Matloka M., “Hermite–Hadamard type inequalities for fractional integrals”, RGMIA Res. Rep. Coll., 20 (2017), 69

[20] Sarıkaya M. Z., Aktan N., “On the generalization of some integral inequalities and their applications”, Math. Comput. Modelling, 54 (2011), 2175–2182 | DOI | MR | Zbl