Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_1_a5, author = {T. G. Ergashev}, title = {Double- and simple-layer potentials for a three-dimensional elliptic equation with a singular coefficient and their applications}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {81--96}, publisher = {mathdoc}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_1_a5/} }
TY - JOUR AU - T. G. Ergashev TI - Double- and simple-layer potentials for a three-dimensional elliptic equation with a singular coefficient and their applications JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 81 EP - 96 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_1_a5/ LA - ru ID - IVM_2021_1_a5 ER -
%0 Journal Article %A T. G. Ergashev %T Double- and simple-layer potentials for a three-dimensional elliptic equation with a singular coefficient and their applications %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2021 %P 81-96 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2021_1_a5/ %G ru %F IVM_2021_1_a5
T. G. Ergashev. Double- and simple-layer potentials for a three-dimensional elliptic equation with a singular coefficient and their applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2021), pp. 81-96. http://geodesic.mathdoc.fr/item/IVM_2021_1_a5/
[1] Mikhlin S. G., Kurs matematicheskoi fiziki, Nauka, M., 1968 | MR
[2] Gyunter N. M., Teoriya potentsiala i ee primenenie k osnovnym zadacham matematicheskoi fiziki, Gostekhizdat, M., 1953 | MR
[3] Kondratev B. P., Teoriya potentsiala. Novye metody i zadachi s resheniyami, Mir, M., 2007
[4] Gellerstedt S., “Sur un probleme aus limites pour l'equation $y^{2s}z_{xx}+z_{yy}=0$”, Arkiv Mat. Ast och Fysik, 25A:10 (1935), 1–12 | Zbl
[5] Frankl F. I., “K teorii uravneniya $yz_{xx}+z_{yy}=0$”, Izv. AN SSSR, Ser. matem., 10:2 (1946), 135–166 | Zbl
[6] Pulkin S. P., “Nekotorye kraevye zadachi dlya uravneniya $u_{xx}\pm u_{yy}+{p}{x^{-1}}u_x=0$”, Uchen. zap. Kuibyshevsk. pedagogichesk. in-ta, Fiz.-matem. nauki, 21 (1958), 3–54
[7] Smirnov M. M., Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, M., 1966
[8] Srivastava H. M., Hasanov A., Choi J., “Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation”, Sohag J. Math., 2:1 (2015), 1–10
[9] Berdyshev A. S., Hasanov A., Ergashev T. G., “Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation. II”, Complex Variables and Elliptic Equat., 65:2 (2020), 316–332 | DOI | MR | Zbl
[10] Ergashev T. G., “Tretii potentsial dvoinogo sloya dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa”, Ufimsk. matem. zhurnal, 10:4 (2018), 111–121 | MR | Zbl
[11] Ergashev T. G., “Chetvertyi potentsial dvoinogo sloya dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa”, Vestn. Tomsk. gos. un-ta., Matem. i mekhan., 2017, no. 50, 45–56
[12] Mavlyaviev R. M., Garipov I. B., “Fundamental solution of multidimensional axisymmetric Helmholtz equation”, Complex Variables and Elliptic Equat., 63:3 (2017), 287–296 | DOI | MR
[13] Mavlyaviev R. M., “Postroenie fundamentalnykh reshenii B-ellipticheskikh uravnenii s mladshimi chlenami”, Izv. vuzov. Matem., 61:6 (2017), 70–75 | MR | Zbl
[14] Mukhlisov F. G., Nigmedzyanova A. M., “Reshenie kraevykh zadach dlya vyrozhdayuschegosya ellipticheskogo uravneniya vtorogo roda metodom potentsialov”, Izv. vuzov. Matem., 2009, no. 8, 57–70 | MR | Zbl
[15] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 1, Nauka, M., 1973
[16] Riesz F., “Über lineare Funktionalgleichungen”, Acta Math., 41 (1918), 71–98 | DOI | MR
[17] Riss F., “O lineinykh funktsionalnykh uravneniyakh”, Usp. matem. nauk, 1936, no. 1, 175–199
[18] Schauder J., “Über lineare vollstetige Funktionaloperationen”, Studia Math., 2 (1930), 183–196 | DOI | Zbl
[19] Riss F., Sekifalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979