Double- and simple-layer potentials for a three-dimensional elliptic equation with a singular coefficient and their applications
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2021), pp. 81-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The double- and simple-layer potentials play an important role in solving boundary value problems for elliptic equations, and in studying this potentials, the properties of the fundamental solutions of the given equation are used. At present, fundamental solutions of the multidimensional Helmholtz equation are known but nevertheless, only for the two-dimensional equations the potential theory was constructed. In this paper we study both potentials for the three-dimensional singular elliptic equation and apply the obtained results to the solving a Dirichlet problem.
Keywords: double-layer potential, simple-layer potential, Green's function, fundamental solution, Dirichlet problem.
@article{IVM_2021_1_a5,
     author = {T. G. Ergashev},
     title = {Double- and simple-layer potentials for a three-dimensional elliptic equation with a singular coefficient and their applications},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {81--96},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_1_a5/}
}
TY  - JOUR
AU  - T. G. Ergashev
TI  - Double- and simple-layer potentials for a three-dimensional elliptic equation with a singular coefficient and their applications
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 81
EP  - 96
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_1_a5/
LA  - ru
ID  - IVM_2021_1_a5
ER  - 
%0 Journal Article
%A T. G. Ergashev
%T Double- and simple-layer potentials for a three-dimensional elliptic equation with a singular coefficient and their applications
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 81-96
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_1_a5/
%G ru
%F IVM_2021_1_a5
T. G. Ergashev. Double- and simple-layer potentials for a three-dimensional elliptic equation with a singular coefficient and their applications. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2021), pp. 81-96. http://geodesic.mathdoc.fr/item/IVM_2021_1_a5/

[1] Mikhlin S. G., Kurs matematicheskoi fiziki, Nauka, M., 1968 | MR

[2] Gyunter N. M., Teoriya potentsiala i ee primenenie k osnovnym zadacham matematicheskoi fiziki, Gostekhizdat, M., 1953 | MR

[3] Kondratev B. P., Teoriya potentsiala. Novye metody i zadachi s resheniyami, Mir, M., 2007

[4] Gellerstedt S., “Sur un probleme aus limites pour l'equation $y^{2s}z_{xx}+z_{yy}=0$”, Arkiv Mat. Ast och Fysik, 25A:10 (1935), 1–12 | Zbl

[5] Frankl F. I., “K teorii uravneniya $yz_{xx}+z_{yy}=0$”, Izv. AN SSSR, Ser. matem., 10:2 (1946), 135–166 | Zbl

[6] Pulkin S. P., “Nekotorye kraevye zadachi dlya uravneniya $u_{xx}\pm u_{yy}+{p}{x^{-1}}u_x=0$”, Uchen. zap. Kuibyshevsk. pedagogichesk. in-ta, Fiz.-matem. nauki, 21 (1958), 3–54

[7] Smirnov M. M., Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, M., 1966

[8] Srivastava H. M., Hasanov A., Choi J., “Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation”, Sohag J. Math., 2:1 (2015), 1–10

[9] Berdyshev A. S., Hasanov A., Ergashev T. G., “Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation. II”, Complex Variables and Elliptic Equat., 65:2 (2020), 316–332 | DOI | MR | Zbl

[10] Ergashev T. G., “Tretii potentsial dvoinogo sloya dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa”, Ufimsk. matem. zhurnal, 10:4 (2018), 111–121 | MR | Zbl

[11] Ergashev T. G., “Chetvertyi potentsial dvoinogo sloya dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa”, Vestn. Tomsk. gos. un-ta., Matem. i mekhan., 2017, no. 50, 45–56

[12] Mavlyaviev R. M., Garipov I. B., “Fundamental solution of multidimensional axisymmetric Helmholtz equation”, Complex Variables and Elliptic Equat., 63:3 (2017), 287–296 | DOI | MR

[13] Mavlyaviev R. M., “Postroenie fundamentalnykh reshenii B-ellipticheskikh uravnenii s mladshimi chlenami”, Izv. vuzov. Matem., 61:6 (2017), 70–75 | MR | Zbl

[14] Mukhlisov F. G., Nigmedzyanova A. M., “Reshenie kraevykh zadach dlya vyrozhdayuschegosya ellipticheskogo uravneniya vtorogo roda metodom potentsialov”, Izv. vuzov. Matem., 2009, no. 8, 57–70 | MR | Zbl

[15] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 1, Nauka, M., 1973

[16] Riesz F., “Über lineare Funktionalgleichungen”, Acta Math., 41 (1918), 71–98 | DOI | MR

[17] Riss F., “O lineinykh funktsionalnykh uravneniyakh”, Usp. matem. nauk, 1936, no. 1, 175–199

[18] Schauder J., “Über lineare vollstetige Funktionaloperationen”, Studia Math., 2 (1930), 183–196 | DOI | Zbl

[19] Riss F., Sekifalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979