$n$-Torsion clean and almost $n$-torsion clean matrix rings
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2021), pp. 52-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We (completely) determine those natural numbers $n$ for which the full matrix ring $\mathbb{M}_n(\mathbb{F}_2)$ and the triangular matrix ring $\mathbb{T}_n(\mathbb{F}_2)$ over the two elements field $\mathbb{F}_2$ are either $n$-torsion clean or are almost $n$-torsion clean, respectively. These results somewhat address and settle a question, recently posed by Danchev-Matczuk in Contemp. Math. (2019) as well as they supply in a more precise aspect the nil-cleanness property of the full matrix $n\times n$ ring $\mathbb{M}_n(\mathbb{F}_2)$ for all naturals $n\geq 1$, established in Linear Algebra Appl. (2013) by Breaz-Cǎlugǎreanu-Danchev-Micu and again in Linear Algebra Appl. (2018) by Šter as well as in Indag. Math. (2019) by Shitov.
Keywords: $n$-torsion clean ring, full matrix ring, triangular matrix ring, simple field.
Mots-clés : polynomial
@article{IVM_2021_1_a3,
     author = {A. C{\^\i}mpean and P. Danchev},
     title = {$n${-Torsion} clean and almost $n$-torsion clean matrix rings},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {52--63},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_1_a3/}
}
TY  - JOUR
AU  - A. Cîmpean
AU  - P. Danchev
TI  - $n$-Torsion clean and almost $n$-torsion clean matrix rings
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 52
EP  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_1_a3/
LA  - ru
ID  - IVM_2021_1_a3
ER  - 
%0 Journal Article
%A A. Cîmpean
%A P. Danchev
%T $n$-Torsion clean and almost $n$-torsion clean matrix rings
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 52-63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_1_a3/
%G ru
%F IVM_2021_1_a3
A. Cîmpean; P. Danchev. $n$-Torsion clean and almost $n$-torsion clean matrix rings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2021), pp. 52-63. http://geodesic.mathdoc.fr/item/IVM_2021_1_a3/

[1] Thompson L., “Variations on a question concerning the degrees of divisors of $x^n-1$”, J. Th. Nombr. Bordeax, 26 (2014), 253–267 | DOI | MR | Zbl

[2] C. de Seguins Pazzis, “On decomposing any matrix as a linear combination of three idempotents”, Lin. Alg. Appl., 433 (2010), 843–855 | DOI | MR | Zbl

[3] C. de Seguins Pazzis, “On sums of idempotent matrices over a field of positive characteristic”, Lin. Alg. Appl., 433 (2010), 856–866 | DOI | MR | Zbl

[4] Breaz S., Cǎlugǎreanu G., Danchev P., Micu T., “Nil-clean matrix rings”, Lin. Alg. Appl., 439 (2013), 3115–3119 | DOI | MR | Zbl

[5] Šter J., “On expressing matrices over $\mathbb{Z}_2$ as the sum of an idempotent and a nilpotent”, Lin. Alg. Appl., 544 (2018), 339–349 | DOI | MR

[6] Abyzov A. N., Mukhametgaliev I. I., “On some matrix analogs of the little Fermat theorem”, Mat. Zametki, 101 (2017), 163–168 | DOI | MR | Zbl

[7] Breaz S., “Matrices over finite fields as sums of periodic and nilpotent elements”, Lin. Alg. Appl., 555 (2018), 92–97 | DOI | MR | Zbl

[8] Cîmpean A. and Danchev P., “Weakly nil-clean index and uniquely weakly nil-clean rings”, Internat. Electron. J. Algebra, 21 (2017), 180–197 | DOI | MR

[9] Danchev P., Matczuk J., “$n$-Torsion clean rings”, Contemp. Math., 727, 2019, 71–82 | DOI | MR | Zbl

[10] Shitov Y., “The ring $\mathbb{M}_{8k+4}(\mathbb{Z}_2)$ is nil-clean of index four”, Indag. Math., 30 (2019), 1077–1078 | DOI | MR | Zbl

[11] Breaz S., Modoi G. C., “Nil clean companion matrices”, Lin. Alg. Appl., 489 (2016), 50–60 | DOI | MR | Zbl

[12] Faith C., Algebra: Rings, Modules and Categories, v. I, Grundlehren der mathematischen Wissenschaften, 190, Springer-Verlag, Berlin–Heidelberg, 1973 | MR | Zbl

[13] Lam T.-Y., Lectures on Modules and Rings, Graduate Texts in Mathematics, 189, Springer-Verlag, New York, 1999 | DOI | MR | Zbl

[14] Danchev P. V., Weakly $n$-torsion clean rings, submitted | MR

[15] Edwards A. W. F., Pascal's Arithmetical Triangle, Oxford University Press, New York–London, 1987 | MR | Zbl