Solvability of a certain system of singular integral equations with convex nonlinearity on the positive half-line
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2021), pp. 31-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a system of nonlinear singular integral equations with a sum-difference kernel on the positive half-line. In various representations, the system arises in many branches of mathematical physics and applied mathematics. In particular, a system of equations with a kernel representing a Gaussian distribution and with power nonlinearity arises in the dynamic theory of $ p $-adic open-closed strings, and in the case when the nonlinearity has a certain exponential structure, such a system occurs in mathematical biology, namely in the theory of the spatio-temporal distribution of the epidemic. The constructive theorems of the existence of non-negative non-trivial continuous and bounded solutions are proved. The questions of uniqueness and asymptotic behavior of the constructed solutions at infinity are investigated. At the end, specific applied examples of these equations are given that satisfy all the conditions of the proved theorems.
Mots-clés : kernel
Keywords: nonlinearity, monotonicity, convexity, spectral radius, limit of solution.
@article{IVM_2021_1_a2,
     author = {Kh. A. Khachatryan and H. S. Petrosyan},
     title = {Solvability of a certain system of singular integral equations with convex nonlinearity on the positive half-line},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {31--51},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_1_a2/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - H. S. Petrosyan
TI  - Solvability of a certain system of singular integral equations with convex nonlinearity on the positive half-line
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 31
EP  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_1_a2/
LA  - ru
ID  - IVM_2021_1_a2
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A H. S. Petrosyan
%T Solvability of a certain system of singular integral equations with convex nonlinearity on the positive half-line
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 31-51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_1_a2/
%G ru
%F IVM_2021_1_a2
Kh. A. Khachatryan; H. S. Petrosyan. Solvability of a certain system of singular integral equations with convex nonlinearity on the positive half-line. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2021), pp. 31-51. http://geodesic.mathdoc.fr/item/IVM_2021_1_a2/

[1] Vladimirov V. S., “O nelineinykh uravneniyakh $p$-adicheskikh otkrytykh, zamknutykh i otkryto-zamknutykh strun”, TMF, 149:3 (2006), 354–367 | MR | Zbl

[2] Khachatryan Kh. A., “O razreshimosti nekotorykh klassov nelineinykh singulyarnykh kraevykh zadach, voznikayuschikh v teorii p-adicheskikh otkryto-zamknutykh strun”, TMF, 200:1 (2019), 106–117 | MR | Zbl

[3] Diekmann O., “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 6:2 (1978), 109–130 | DOI | MR | Zbl

[4] Khachatryan A. Kh., Khachatryan Kh. A., “Odnoparametricheskoe semeistvo polozhitelnykh reshenii nelineinogo statsionarnogo uravneniya Boltsmana v ramkakh modifitsirovannoi modeli”, Usp. matem. nauk, 72:3 (2017), 191–192 | MR | Zbl

[5] Lankaster P., Teoriya matrits, Nauka, M., 1982 | MR

[6] Khachatryan Kh. A., “O razreshimosti nekotorykh klassov nelineinykh integralnykh uravnenii v teorii $p$-adicheskoi struny”, Izv. RAN. Ser. matem., 82:2 (2018), 172–193 | MR | Zbl

[7] Khachatryan Kh. A., “O razreshimosti odnoi granichnoi zadachi v $p$-adicheskoi teorii strun”, Tr. MMO, 79, no. 1, 2018, 117–132 | Zbl

[8] Zhukovskaya L. V., “Iteratsionnyi metod resheniya nelineinykh integralnykh uravnenii, opisyvayuschikh rollingovye resheniya v teorii strun”, TMF, 146:3 (2006), 402–409 | MR

[9] Vladimirov V. S., Volovich Ya. I., “O nelineinom uravnenii dinamiki v teorii $p$-adicheskoi struny”, TMF, 138:3 (2004), 355–368 | MR | Zbl

[10] Khachatryan Kh. A., “O razreshimosti nekotorykh nelineinykh granichnykh zadach dlya singulyarnukh integralnykh uravnenii tipa svertki”, Tr. MMO, 81, no. 1, 2020, 3–40

[11] Khachatryan Kh. A., “O razreshimosti odnoi sistemy nelineinykh integralnykh uravnenii tipa Gammershteina na pryamoi”, Izv. Saratovsk. un-ta, Ser. Matem. Mekhan. Informatika, 19:2 (2019), 164–181 | MR | Zbl

[12] Petrosyan A. S., Terdzhyan Ts. E., Khachatryan Kh. A., “Edinstvennost resheniya odnoi sistemy integralnykh uravnenii na poluosi s vypukloi nelineinostyu”, Matem. tr., 23:2 (2020), 187–203

[13] Kolmogorov A. N., Fomin V. S., Elementy teorii funktsiei i funktsionalnogo analiza, 5-izd., Nauka, M., 1981 | MR

[14] Rudin U., Funktsionalnyi analiz, Mir, M., 1975