Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_12_a5, author = {V. V. Malygina}, title = {Exponent estimation for stable solutions of a certain class of differential-difference equations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {67--79}, publisher = {mathdoc}, number = {12}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_12_a5/} }
TY - JOUR AU - V. V. Malygina TI - Exponent estimation for stable solutions of a certain class of differential-difference equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 67 EP - 79 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_12_a5/ LA - ru ID - IVM_2021_12_a5 ER -
V. V. Malygina. Exponent estimation for stable solutions of a certain class of differential-difference equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2021), pp. 67-79. http://geodesic.mathdoc.fr/item/IVM_2021_12_a5/
[1] Pertsev N. V., “Primenenie M-matrits dlya postroeniya eksponentsialnykh otsenok reshenii zadachi Koshi dlya nekotorykh sistem lineinykh raznostnykh i differentsialnykh uravnenii”, Matem. tr., 16:2 (2013), 111–141 | Zbl
[2] Demidenko G. V., Matveeva I. I., “Asimptoticheskie svoistva reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Vestn. NGU. Ser. Matem., mekhan., informatika, 5:3 (2005), 20–28 | Zbl
[3] Liz E., Pituk M., “Exponential stability in a scalar functional-differential equation”, J. Inequal. Appl., 2006, 37195 | Zbl
[4] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991
[5] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972
[6] Ryabov Yu. A., “Nekotorye asimptoticheskie svoistva lineinykh sistem s malym zapazdyvaniem po vremeni”, DAN SSSR, 151:1 (1963), 52–54 | Zbl
[7] Azbelev N. V., Simonov P. M., Ustoichivost reshenii uravnenii s obyknovennymi proizvodnymi, Izd-vo Permsk. un-ta, Perm, 2001
[8] Agarwal R. P., Berezansky L., Braverman E., Domoshnitsky A., Nonoscillation theory of functional differential equations with applications, Springer, New York, 2012 | Zbl
[9] Chudinov K. M., “Asimptotika polozhitelnykh reshenii avtonomnogo diffrentsialnogo uravneniya s posledeistviem”, Sovremennye metody prikl. matem., teorii upravleniya i kompyuternykh tekhn., PMTUKT-2015, sb. tr. konf. (Voronezh, 21–26 sent. 2015 g.), Nauchn. kniga, Voronezh, 2015, 386–388
[10] Sabatulina T., Malygina V., “On positiveness of the fundamental solution for a linear autonomous differential equation with distributed delay”, Electron. J. Qual. Theory Differ. Equat., 2014, 61 | Zbl
[11] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987
[12] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971
[13] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984
[14] Malygina V. V., Chudinov K. M., “Ustoichivost reshenii differentsialnykh uravnenii s neskolkimi peremennymi zapazdyvaniyami. II”, Izv. vuzov. Matem., 2013, no. 7, 3–15 | Zbl
[15] Sabatulina T. L., “Oscillating and sign-definite solutions to autonomous functional-differential equations”, J. Math. Sci., 230:5 (2018), 766–769 | DOI | Zbl
[16] Györi I., Ladas G., Oscillation theory of delay differential equations: with applications, Clarendon Press, Oxford, 1991 | Zbl