Sobolev orthogonal systems with two discrete points and Fourier series
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2021), pp. 56-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider properties of systems $\Phi_1$ orthogonal with respect to a discrete-continuous Sobolev inner product of the form $\langle f,g \rangle_S = f(a)g(a)+f(b)g(b)+\int_a^b f'(t)g'(t)dt$. In particular, we study completeness of the $\Phi_1$ systems in the Sobolev space $W^1_{L^2}$. Additionally, we analyze properties of the Fourier series with respect to $\Phi_1$ systems and prove that these series converge uniformly to functions from $W^1_{L^2}$.
Keywords: discrete-continuous inner product, Sobolev inner product, Fabe–Schauder system, Jacobi polynomials with negative parameters, Fourier series, coincidence at the ends of the segment, completeness of Sobolev systems.
Mots-clés : uniform convergence
@article{IVM_2021_12_a4,
     author = {M. G. Magomed-Kasumov},
     title = {Sobolev orthogonal systems with two discrete points and {Fourier} series},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {56--66},
     publisher = {mathdoc},
     number = {12},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_12_a4/}
}
TY  - JOUR
AU  - M. G. Magomed-Kasumov
TI  - Sobolev orthogonal systems with two discrete points and Fourier series
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 56
EP  - 66
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_12_a4/
LA  - ru
ID  - IVM_2021_12_a4
ER  - 
%0 Journal Article
%A M. G. Magomed-Kasumov
%T Sobolev orthogonal systems with two discrete points and Fourier series
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 56-66
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_12_a4/
%G ru
%F IVM_2021_12_a4
M. G. Magomed-Kasumov. Sobolev orthogonal systems with two discrete points and Fourier series. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2021), pp. 56-66. http://geodesic.mathdoc.fr/item/IVM_2021_12_a4/

[1] Marcellan F., Xu Y., “On Sobolev orthogonal polynomials”, Expositiones Math., 33 (2015), 308–352 | DOI | Zbl

[2] Marcellan F., Quintana Y., Urieles A., “On the Pollard decomposition method applied to some Jacobi–Sobolev expansions”, Turk. J. Math., 37:6 (2013), 934–948 | Zbl

[3] Ciaurri O., Minguez J., “Fourier series of Jacobi-Sobolev polynomials”, Integral Transfand. Spec. Funct., 30 (2019), 334–346 | DOI | Zbl

[4] Ciaurri O., Minguez J., Fourier series for coherent pairs of Jacobi measures, Preprint

[5] Fejzullahu B.Xh., “Asymptotic properties and Fourier expansions of orthogonal polynomials with a non-discrete Gegenbauer-Sobolev inner product”, J. Approxim. Theory, 162:2 (2010), 397–406 | DOI | Zbl

[6] Fejzullahu B.Xh., Marcellan F., Moreno-Balcazar J. J., “Jacobi-Sobolev orthogonal polynomials: asymptotics and a Cohen type inequality”, J. Approxim. Theory, 170 (2013), 78–93 | DOI | Zbl

[7] Iserles A., Koch P. E., Norsett S. P., Sanz-Serna J. M., “On polynomials orthogonal with respect to certain Sobolev inner product”, J. Approx. Theory, 65:2 (1991), 151–175 | DOI | Zbl

[8] Marcellan F., Osilenker B. P., Rocha I. A., “On Fourier series of a Discrete Jacobi-Sobolev Inner Product”, J. Approx. Theory, 117:1 (2002), 1–22 | DOI | Zbl

[9] Rocha I., Marcellan F., Salto L., “Relative asymptotics and Fourier series of orthogonal polynomials with a discrete Sobolev inner product”, J. Approx. Theory, 121:2 (2003), 336–356 | DOI | Zbl

[10] Osilenker B. P., “Skhodimost i summiruemost ryadov Fure–Soboleva”, Vestn. MGSU, 2012, no. 5 https://cyberleninka.ru/article/n/shodimost-i-summiruemost-ryadov-furie-soboleva-1

[11] Osilenker B. P., “O lineinykh metodakh summirovaniya ryadov Fure po mnogochlenam, ortogonalnym v diskretnykh prostranstvakh Soboleva”, Sib. matem. zhurn., 56:2 (2015), 420–435 | Zbl

[12] Fejzullahu B.Xh., Marcellan F., “On convergence and divergence of Fourier expansions with respect to some Gegenbauer-Sobolev type inner product”, Commun. Anal. Theory of Continued Fractions, 2009, no. 16, 1–11

[13] Ciaurri O., Minguez J., “Fourier series of Gegenbauer-Sobolev polynomials”, SIGMA Symm. Integrabi. Geom. Methods Appl., 14 (2018), 024, 11 pp. | Zbl

[14] Sharapudinov I. I., “Ortogonalnye po Sobolevu sistemy funktsii i nekotorye ikh prilozheniya”, UMN, 74 (4):448 (2019), 87–164 | Zbl

[15] Sharapudinov I. I., “Sistemy funktsii, ortogonalnye po Sobolevu, assotsiirovannye s ortogonalnoi sistemoi”, Izv. RAN. Ser. Matem., 82:1 (2018), 225–258 | Zbl

[16] Magomed-Kasumov M. G., “Sistema funktsii, ortogonalnaya v smysle Soboleva i porozhdennaya sistemoi Uolsha”, Matem. zametki, 105:4 (2019), 545–552 | Zbl

[17] Gadzhimirzaev R. M., “Sobolev-orthonormal system of functions generated by the system of Laguerre functions”, Probl. anal. Issues Anal., 8 (26):1 (2019), 32–46 | DOI | Zbl

[18] Diaz-Gonzalez A., Marcellan F., Pijeira-Cabrera H., Urbina W., “Discrete-Continuous Jacobi-Sobolev Spaces and Fourier Series”, Bull. Malays. Math. Sci. Soc., 2020 | DOI

[19] Sharapudinov I. I., “Polinomy, ortogonalnye po Sobolevu, assotsiirovannye s polinomami Chebysheva pervogo roda, i zadacha Koshi dlya obyknovennykh differentsialnykh uravnenii”, Differents. uravneniya, 54:12 (2018), 1645–1662 | Zbl

[20] Sharapudinov I. I., “Ortogonalnye po Sobolevu sistemy funktsii i zadacha Koshi dlya ODU”, Izv. RAN. Ser. Matem., 83:2 (2019), 204–226 | Zbl

[21] Sege G., Ortogonalnye mnogochleny, GIFML, M., 1962, 500 pp.

[22] Kwon K. H., Littlejohn L. L., “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28:2 (1998), 547–594 | DOI | Zbl

[23] Kashin B. S., Saakyan A. A., Ortogonalnye ryady., 2 dop., Izd-vo AFTs, M., 1999

[24] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Nauka., M., 1987