Structures of degrees of negative representations of linear orders
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2021), pp. 31-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structures of partially ordered sets of degrees of negative and positive representability of linear orders are studied. The focus is on the negative representability of linear orders and orders with endomorphisms. In particular, for these structures established the existence of incomparable, maximal and minimal degrees, infinite chains and anti-chains, and also considered the connection with the concepts of the reducibility of enumerartions, splittable degrees and positive representations.
Keywords: linear order with endomorphisms, enumerated system, negative and positive representations, degree of representability, standard representation, splittable degree.
@article{IVM_2021_12_a3,
     author = {N. Kh. Kasymov and R. N. Dadazhanov and S. K. Djavliev},
     title = {Structures of degrees of negative representations of linear orders},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {31--55},
     publisher = {mathdoc},
     number = {12},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_12_a3/}
}
TY  - JOUR
AU  - N. Kh. Kasymov
AU  - R. N. Dadazhanov
AU  - S. K. Djavliev
TI  - Structures of degrees of negative representations of linear orders
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 31
EP  - 55
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_12_a3/
LA  - ru
ID  - IVM_2021_12_a3
ER  - 
%0 Journal Article
%A N. Kh. Kasymov
%A R. N. Dadazhanov
%A S. K. Djavliev
%T Structures of degrees of negative representations of linear orders
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 31-55
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_12_a3/
%G ru
%F IVM_2021_12_a3
N. Kh. Kasymov; R. N. Dadazhanov; S. K. Djavliev. Structures of degrees of negative representations of linear orders. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2021), pp. 31-55. http://geodesic.mathdoc.fr/item/IVM_2021_12_a3/

[1] Ershov Yu. L., Teoriya numeratsii, Nauka, M., 1977

[2] Ershov Yu. L., Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980

[3] Goncharov S. S., Ershov Yu. L., Konstruktivnye modeli, Nauchn. kn., Novosibirsk, 1999

[4] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970

[5] Soar I. R., Vychislimo perechislimye mnozhestva i stepeni, Kazansk. matem. o-vo, Kazan, 2000

[6] Maltsev A. I., “K obschei teorii algebraicheskikh sistem”, Matem. sb., 35:1 (1954), 3–20 | Zbl

[7] Maltsev A. I., “Konstruktivnye algebry. I”, UMN, 16:3 (1961), 3–60 | Zbl

[8] Kasymov N. Kh., “Rekursivno otdelimye numerovannye algebry”, UMN, 51:3 (1996), 145–176 | Zbl

[9] Kasymov N. Kh., “O gomomorfizmakh na negativnye algebry”, Algebra i logika, 31:2 (1992), 132–144 | Zbl

[10] Kasymov N. Kh., Ibragimov F. N., “Vychislimo otdelimye modeli”, SMFN, 64, no. 4, 2018, 682–705

[11] Kasymov N. Kh., “O gomomorfizmakh na effektivno otdelimye algebry”, Sib. matem. zhurn., 57:1 (2016), 47–66 | Zbl

[12] Kasymov N. Kh., Ibragimov F. N., “Otdelimye numeratsii tel i effektivnaya vlozhimost v nikh kolets”, Sib. matem. zhurn., 60:1 (2019), 82–94 | Zbl

[13] Kasymov N. Kh., “Aksiomy otdelimosti i razbieniya naturalnogo ryada”, Sib. matem. zhurn., 34:3 (1993), 81–85 | Zbl

[14] Kasymov N. Kh., Khodzhamuratova I. A., “Topologicheskie prostranstva nad algoritmicheskimi predstavleniyami universalnykh algebr”, Itogi nauki i tekhn. Sovremen. matem. i ee prilozh. Temat. obz., 144, 2018, 17–29

[15] Kasymov N. Kh., “Ob algebrakh nad negativnymi ekvivalentnostyami”, Algebra i logika, 33:1 (1994), 76–80 | Zbl

[16] Kasymov N. Kh., “Nekonstruktivnye negativnye algebry s usloviyami konechnosti”, Sib. matem. zhurn., 33:6 (1992), 195–198

[17] Kasymov N. Kh., “Pozitivnye algebry s kongruentsiyami konechnogo indeksa”, Algebra i logika, 30:3 (1991), 293–305

[18] Kasymov N. Kh., “Pozitivnye algebry so schetnymi reshetkami kongruentsii”, Algebra i logika, 31:1 (1992), 21–37 | Zbl

[19] Kasymov N. Kh., “Pozitivnye algebry s neterovymi reshetkami kongruentsii”, Sib. matem. zhurn., 33:2 (1992), 181–185 | Zbl

[20] Kasymov N. Kh., “Ob algebrakh s finitno approksimiruemymi pozitivno predstavimymi obogascheniyami”, Algebra i logika, 26:6 (1987), 715–730

[21] Kasymov N. Kh., “O chisle Q-kongruentsii pozitivnykh algebr”, Algebra i logika, 31:3 (1992), 297–305 | Zbl

[22] Kasymov N. Kh., “O chisle kongruentsii algebr nad prostymi mnozhestvami”, Matem. zametki, 52:2 (1992), 150–152

[23] Kasymov N. Kh., Khusainov B. M., “Pozitivnye ekvivalentnosti s konechnymi klassami i algebry nad nimi”, Sib. matem. zhurn., 33:5 (1992), 196–200 | Zbl

[24] Kasymov N. Kh., Dadazhanov R. N., “Negativnye plotnye lineinye poryadki”, Sib. matem. zhurn., 58:6 (2017), 1306–1331 | Zbl

[25] Morozov A. S., Truss J. K., “On computable automorphisms of the rational numbers”, J. Symbolic Logic, 66:3 (2001), 1458–1470 | DOI | Zbl

[26] Kasymov N. Kh., “Numerovannye algebry s ravnomerno rekursivno otdelimymi klassami”, Sib. matem. zhurn., 34:5 (1993), 85–102 | Zbl

[27] Goncharov S. S., “Modeli dannykh i yazyki ikh opisanii”, Vychisl. sistemy, 107 (1985), 52–77

[28] Kasymov N. Kh., Morozov A. S., “Ob opredelimosti lineinykh poryadkov nad negativnymi ekvivalentnostyami”, Algebra i logika, 55:1 (2016), 37–57 | Zbl

[29] Feiner L., “Hierarchies of boolean algebras”, J. Symb. Logic, 35:2 (1970), 365–374 | DOI

[30] Khoussainov B., Slaman T., Semukhin P., “$\prod_1^0$-presentasions of algebras”, Archive Math. Logic, 45:6 (2006), 769–781 | DOI | Zbl

[31] Fokina E., Khoussainov B., Semukhin P., Turetskiy D., “Linear orders realized by C.E. equivalence relations”, J. Symb. Logic, 81:2 (2016), 463–482 | DOI | Zbl