Dynamic behavior of a class of delayed Lotka--Volterra recurrent neural networks on time scales
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2021), pp. 67-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, Lotka–Volterra recurrent neural networks with time-varying delays on time scales are considered. Using Banach's fixed-point principle, the theory of calculus on time scales and suitable Lyapunov functional, some sufficient conditions for the existence, uniqueness and Stepanov-exponential stability of positive weighted Stepanov-like pseudo almost periodic solution on time scales to the recurrent neural networks are established. Finally, an illustrative example and simulations are presented to demonstrate the effectiveness of the theoretical findings of the paper. The results of this paper are new and generalize some previously-reported results in the literature.
Mots-clés : time scale
Keywords: Bochner-like transform, Lotka-Volterra recurrent neural network, weighted Stepanov-like pseudo almost periodic solution, global stability.
@article{IVM_2021_11_a6,
     author = {M. Es-saiydy and M. Zitane},
     title = {Dynamic behavior of a class of delayed {Lotka--Volterra} recurrent neural networks on time scales},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {67--85},
     publisher = {mathdoc},
     number = {11},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_11_a6/}
}
TY  - JOUR
AU  - M. Es-saiydy
AU  - M. Zitane
TI  - Dynamic behavior of a class of delayed Lotka--Volterra recurrent neural networks on time scales
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 67
EP  - 85
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_11_a6/
LA  - ru
ID  - IVM_2021_11_a6
ER  - 
%0 Journal Article
%A M. Es-saiydy
%A M. Zitane
%T Dynamic behavior of a class of delayed Lotka--Volterra recurrent neural networks on time scales
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 67-85
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_11_a6/
%G ru
%F IVM_2021_11_a6
M. Es-saiydy; M. Zitane. Dynamic behavior of a class of delayed Lotka--Volterra recurrent neural networks on time scales. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2021), pp. 67-85. http://geodesic.mathdoc.fr/item/IVM_2021_11_a6/

[1] Kuo T. C., Huang Y. J., “Global stabilization of robot control with neural network and sliding mode”, Engineering Lett., 16 (2008), 56–60

[2] Asai T., Fukai T., Tanaka S., “A subthreshold MOS circuit for the Lotka–Volterra neural network producing the winner-share-all solution”, Neur. Networks, 12 (1999), 211–216 | DOI

[3] Asai T., Ohtani M., Yonezu H., “Analog integrated circuits for the Lotka–Volterra competitive neural networks”, IEEE Trans. Neur. Networks, 10 (1999), 1222–1231 | DOI

[4] Raflkov M., Tusset A. M., “Modeling and optimal control of predator-prey systems: Applications in biological pest control”, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 2 (2005), 658–662

[5] Su Y.H., Feng Z. S., “Homoclinic orbits and periodic solution for a class of Hamiltonian systems on time scales”, J. Math. Anal. Appl., 411 (2014), 37–62 | DOI | Zbl

[6] Es-saiydy M., Zitane M., “Stepanov-like pseudo almost automorphic dynamics of QVRNNS with mixed delays on time scales via a direct method”, Asia Pac. J. Math., 7:32 (2020) | DOI

[7] Li Y., Qin J., Li B., “Existence and global exponential stability of anti-periodic solution for delayed quaternion-valued cellular neural networks with impulsive effects”, Math. Methods Appl. Sci., 42:1 (2018), 5–23

[8] Song Q., Chen X., “Multistability analysis of quaternion-valued neural networks with time delays”, IEEE Trans. Neural Netw. Learn. Syst., 29:11 (2018), 5430–5440 | DOI

[9] Lin W., Chen T., “Positive Periodic Solutions of Delayed Periodic Lotka–Volterra Systems”, Phys. Lett. A, 334:4 (2005), 273–287 | DOI | Zbl

[10] Liu Y., Liu B., Ling S., “The almost periodic solution of Lotka–Volterra recurrent neural networks with delays”, Neurocomput., 74:6 (2011), 1062–1068 | DOI

[11] Amdouni M., Chérif F., “The pseudo almost periodic solution of the new class of Lotka Volterra recurrent neural networks with mixed delay”, Chaos, Solit. and Fract., 113 (2018), 79–88 | DOI | Zbl

[12] Liao Y., “Almost periodicity in a harvesting Lotka–Volterra recurrent neural networks”, International Journal of Mathematical, Comput. Sci. and Engineering, 7:5 (2013)

[13] Es-saiydy M., Zitane M., “A New Composition Theorem for Weighted Stepanov-like Pseudo Almost Periodic Functions on Time Scales and Applications”, Bol. Soc. Parana. Math. (to appear)

[14] Hilger S., Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD, Univ. Würzburg, 1988 | Zbl

[15] Su Y., Feng Z. S., “A non-autonomous Hamiltonian system on time scales”, Nonlinear Anal., 75 (2012), 4126–4136 | DOI | Zbl

[16] Aticia F. M., Bilesa D. C., Lebedinsky A., “An application of time scales to economics”, Math. and Comput. Model., 43 (2006), 718–726 | DOI

[17] Li Y., Zhao L., “Weighted pseudo-almost periodic functions on time scales with applications to cellular neural networks with discrete delays”, Math. Meth. Appl. Sci., 2016, 1–17

[18] Shen S., Li B., Li Y., “Anti-Periodic Dynamics of Quaternion-Valued Fuzzy Cellular Neural Networks with Time-Varying Delays on Time Scales”, Discrete Dynamics in Nature and Soc., 2018 (2018), 5290786 | DOI | Zbl

[19] Zhou H., Zhou Z. F., Jiang W., “Almost periodic solution for neutral type BAM neural networks with distributed leakage delays on time scales”, Neurocomput., 157 (2015), 223–230 | DOI

[20] Chérif F., Abdelaziz M., “Stepanov-Like Pseudo Almost Periodic Solution of Quaternion-Valued for Fuzzy Recurrent Neural Networks with Mixed Delays”, Neural Process. Lett., 51 (2020), 2211–2243 | DOI

[21] Shen S., Li Y., “$S^p$-Almost Periodic Solutions of Clifford-Valued Fuzzy Cellular Neural Networks with Time-Varying Delays”, Neural Process Lett., 51 (2020), 1749–1769 | DOI

[22] Zitane M., “A generalization of weighted Stepanov-like pseudo-almost automorphic space”, New Zealand J. Math., 48 (2018), 129–155 | Zbl

[23] Es-saiydy M., Zitane M., “Weighted Stepanov-Like Pseudo Almost Periodicity on Time Scales and Applications”, Diff. Equat. Dyn. Syst., 2020 | DOI

[24] Tang C. H., Li H., “Stepanov-like pseudo almost periodic functions on time scales and applications to dynamic equations with delay”, Open Math., 16 (2018), 826–841 | DOI | Zbl

[25] Tang C. H., Li H., “Bochner-Like Transform and Stepanov Almost Periodicity on Time Scales with Applications”, Symmetry, 10:11 (2018), 566 | DOI | Zbl

[26] Es-saiydy M., Zarhouni M., Zitane M., “Oscillation and $S^p$-stability of delayed Quaternion-Valued Fuzzy Recurrent Neural Networks on time scales”, Palestine J. Math. (to appear)

[27] Bohner M., Hari Rao V. S., Sanyal S., “Global Stability of Complex-Valued Neural Networks on Time Scales”, Diff. Equat. Dyn. Sys., 19 (2011), 3–11 | DOI | Zbl

[28] Cabada A., Vivero D., “Expression of the Lebesgue D-Integral on Time Scales as a Usual Lebesgue Intregral, Application to the Calculus of D-Antiderivatives”, Math. and Comput. Modelling, 43 (2006), 194–207 | DOI | Zbl

[29] Deniz A., Ufuktepe U., “Lebesgue–Stieltjes Measure on Time Scales”, Turk. J. Math., 33 (2009), 27–40 | Zbl

[30] Wang C., Agarwal R. P., “Relatively dense sets, corrected uniformly almost periodic functions on time scales, and generalizations”, Adv. Diff. Equat., 2015 (2015), 312 | DOI

[31] Lou X. Y., Cui B. T., “Novel global stability criteria for high-order Hopfield-type neural networks with time-varying delays”, Math. Anal. and Appl., 330 (2007), 144–158 | DOI | Zbl

[32] Prasad K. R., Khuddush M., “Existence and uniform asymptotic stability of positive almost periodic solutions for three-species Lotka–Volterra competitive system on time scales”, Asian-European J. of Math., 13:03 (2020), 2050059 | DOI

[33] Xiaojie Y., Fajin Q., “Almost periodicity in a harvesting Lotka-Volterra recurrent neural networks with mixed delays and impulses”, Proceedings of the 33rd Chinese Control Conference (Nanjing, 2014), IEEE, 5107–5112 | DOI

[34] Yang L., Li Z., Pang L., Zhang T., “Almost Periodic Solution in a Lotka–Volterra Recurrent Neural Networks with Time-Varying Delays”, International J. of Nonlinear Sci. and Num. Simulation, 21:5 (2020), 521–521 | DOI