Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_11_a6, author = {M. Es-saiydy and M. Zitane}, title = {Dynamic behavior of a class of delayed {Lotka--Volterra} recurrent neural networks on time scales}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {67--85}, publisher = {mathdoc}, number = {11}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_11_a6/} }
TY - JOUR AU - M. Es-saiydy AU - M. Zitane TI - Dynamic behavior of a class of delayed Lotka--Volterra recurrent neural networks on time scales JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 67 EP - 85 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_11_a6/ LA - ru ID - IVM_2021_11_a6 ER -
%0 Journal Article %A M. Es-saiydy %A M. Zitane %T Dynamic behavior of a class of delayed Lotka--Volterra recurrent neural networks on time scales %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2021 %P 67-85 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2021_11_a6/ %G ru %F IVM_2021_11_a6
M. Es-saiydy; M. Zitane. Dynamic behavior of a class of delayed Lotka--Volterra recurrent neural networks on time scales. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2021), pp. 67-85. http://geodesic.mathdoc.fr/item/IVM_2021_11_a6/
[1] Kuo T. C., Huang Y. J., “Global stabilization of robot control with neural network and sliding mode”, Engineering Lett., 16 (2008), 56–60
[2] Asai T., Fukai T., Tanaka S., “A subthreshold MOS circuit for the Lotka–Volterra neural network producing the winner-share-all solution”, Neur. Networks, 12 (1999), 211–216 | DOI
[3] Asai T., Ohtani M., Yonezu H., “Analog integrated circuits for the Lotka–Volterra competitive neural networks”, IEEE Trans. Neur. Networks, 10 (1999), 1222–1231 | DOI
[4] Raflkov M., Tusset A. M., “Modeling and optimal control of predator-prey systems: Applications in biological pest control”, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 2 (2005), 658–662
[5] Su Y.H., Feng Z. S., “Homoclinic orbits and periodic solution for a class of Hamiltonian systems on time scales”, J. Math. Anal. Appl., 411 (2014), 37–62 | DOI | Zbl
[6] Es-saiydy M., Zitane M., “Stepanov-like pseudo almost automorphic dynamics of QVRNNS with mixed delays on time scales via a direct method”, Asia Pac. J. Math., 7:32 (2020) | DOI
[7] Li Y., Qin J., Li B., “Existence and global exponential stability of anti-periodic solution for delayed quaternion-valued cellular neural networks with impulsive effects”, Math. Methods Appl. Sci., 42:1 (2018), 5–23
[8] Song Q., Chen X., “Multistability analysis of quaternion-valued neural networks with time delays”, IEEE Trans. Neural Netw. Learn. Syst., 29:11 (2018), 5430–5440 | DOI
[9] Lin W., Chen T., “Positive Periodic Solutions of Delayed Periodic Lotka–Volterra Systems”, Phys. Lett. A, 334:4 (2005), 273–287 | DOI | Zbl
[10] Liu Y., Liu B., Ling S., “The almost periodic solution of Lotka–Volterra recurrent neural networks with delays”, Neurocomput., 74:6 (2011), 1062–1068 | DOI
[11] Amdouni M., Chérif F., “The pseudo almost periodic solution of the new class of Lotka Volterra recurrent neural networks with mixed delay”, Chaos, Solit. and Fract., 113 (2018), 79–88 | DOI | Zbl
[12] Liao Y., “Almost periodicity in a harvesting Lotka–Volterra recurrent neural networks”, International Journal of Mathematical, Comput. Sci. and Engineering, 7:5 (2013)
[13] Es-saiydy M., Zitane M., “A New Composition Theorem for Weighted Stepanov-like Pseudo Almost Periodic Functions on Time Scales and Applications”, Bol. Soc. Parana. Math. (to appear)
[14] Hilger S., Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD, Univ. Würzburg, 1988 | Zbl
[15] Su Y., Feng Z. S., “A non-autonomous Hamiltonian system on time scales”, Nonlinear Anal., 75 (2012), 4126–4136 | DOI | Zbl
[16] Aticia F. M., Bilesa D. C., Lebedinsky A., “An application of time scales to economics”, Math. and Comput. Model., 43 (2006), 718–726 | DOI
[17] Li Y., Zhao L., “Weighted pseudo-almost periodic functions on time scales with applications to cellular neural networks with discrete delays”, Math. Meth. Appl. Sci., 2016, 1–17
[18] Shen S., Li B., Li Y., “Anti-Periodic Dynamics of Quaternion-Valued Fuzzy Cellular Neural Networks with Time-Varying Delays on Time Scales”, Discrete Dynamics in Nature and Soc., 2018 (2018), 5290786 | DOI | Zbl
[19] Zhou H., Zhou Z. F., Jiang W., “Almost periodic solution for neutral type BAM neural networks with distributed leakage delays on time scales”, Neurocomput., 157 (2015), 223–230 | DOI
[20] Chérif F., Abdelaziz M., “Stepanov-Like Pseudo Almost Periodic Solution of Quaternion-Valued for Fuzzy Recurrent Neural Networks with Mixed Delays”, Neural Process. Lett., 51 (2020), 2211–2243 | DOI
[21] Shen S., Li Y., “$S^p$-Almost Periodic Solutions of Clifford-Valued Fuzzy Cellular Neural Networks with Time-Varying Delays”, Neural Process Lett., 51 (2020), 1749–1769 | DOI
[22] Zitane M., “A generalization of weighted Stepanov-like pseudo-almost automorphic space”, New Zealand J. Math., 48 (2018), 129–155 | Zbl
[23] Es-saiydy M., Zitane M., “Weighted Stepanov-Like Pseudo Almost Periodicity on Time Scales and Applications”, Diff. Equat. Dyn. Syst., 2020 | DOI
[24] Tang C. H., Li H., “Stepanov-like pseudo almost periodic functions on time scales and applications to dynamic equations with delay”, Open Math., 16 (2018), 826–841 | DOI | Zbl
[25] Tang C. H., Li H., “Bochner-Like Transform and Stepanov Almost Periodicity on Time Scales with Applications”, Symmetry, 10:11 (2018), 566 | DOI | Zbl
[26] Es-saiydy M., Zarhouni M., Zitane M., “Oscillation and $S^p$-stability of delayed Quaternion-Valued Fuzzy Recurrent Neural Networks on time scales”, Palestine J. Math. (to appear)
[27] Bohner M., Hari Rao V. S., Sanyal S., “Global Stability of Complex-Valued Neural Networks on Time Scales”, Diff. Equat. Dyn. Sys., 19 (2011), 3–11 | DOI | Zbl
[28] Cabada A., Vivero D., “Expression of the Lebesgue D-Integral on Time Scales as a Usual Lebesgue Intregral, Application to the Calculus of D-Antiderivatives”, Math. and Comput. Modelling, 43 (2006), 194–207 | DOI | Zbl
[29] Deniz A., Ufuktepe U., “Lebesgue–Stieltjes Measure on Time Scales”, Turk. J. Math., 33 (2009), 27–40 | Zbl
[30] Wang C., Agarwal R. P., “Relatively dense sets, corrected uniformly almost periodic functions on time scales, and generalizations”, Adv. Diff. Equat., 2015 (2015), 312 | DOI
[31] Lou X. Y., Cui B. T., “Novel global stability criteria for high-order Hopfield-type neural networks with time-varying delays”, Math. Anal. and Appl., 330 (2007), 144–158 | DOI | Zbl
[32] Prasad K. R., Khuddush M., “Existence and uniform asymptotic stability of positive almost periodic solutions for three-species Lotka–Volterra competitive system on time scales”, Asian-European J. of Math., 13:03 (2020), 2050059 | DOI
[33] Xiaojie Y., Fajin Q., “Almost periodicity in a harvesting Lotka-Volterra recurrent neural networks with mixed delays and impulses”, Proceedings of the 33rd Chinese Control Conference (Nanjing, 2014), IEEE, 5107–5112 | DOI
[34] Yang L., Li Z., Pang L., Zhang T., “Almost Periodic Solution in a Lotka–Volterra Recurrent Neural Networks with Time-Varying Delays”, International J. of Nonlinear Sci. and Num. Simulation, 21:5 (2020), 521–521 | DOI