On the curvatures of a curve in $n$-dimensional Euclidean space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2021), pp. 54-66
Cet article a éte moissonné depuis la source Math-Net.Ru
Formulas are found for calculating the curvatures of an implicitly defined curve in $n$-dimensional Euclidean space. For these curves, Beltrami's theorem is generalized, which he proved in the three-dimensional case.
Keywords:
smooth curve, curvature, implicit definition of a curve, touching $k$-plane of a curve, Beltrami theorem.
@article{IVM_2021_11_a5,
author = {A.M. Shelekhov},
title = {On the curvatures of a curve in $n$-dimensional {Euclidean} space},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {54--66},
year = {2021},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2021_11_a5/}
}
A.M. Shelekhov. On the curvatures of a curve in $n$-dimensional Euclidean space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2021), pp. 54-66. http://geodesic.mathdoc.fr/item/IVM_2021_11_a5/
[1] Jordan C., “Sur la téorie des courbes dans l'espace à n dimensions”, Oeuvres, 4, Gauthier-Villars, et Blanchard, Paris, 1964, 337–339
[2] Goldman R., “Curvature formulas for implicit curves and surfaces”, Comput. Aided Geometric Design, 22:7 (2005), 632–658 | DOI | Zbl
[3] Rozenfeld B. A., Mnogomernye prostranstva, Nauka, M., 1966