On the curvatures of a curve in $n$-dimensional Euclidean space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2021), pp. 54-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

Formulas are found for calculating the curvatures of an implicitly defined curve in $n$-dimensional Euclidean space. For these curves, Beltrami's theorem is generalized, which he proved in the three-dimensional case.
Keywords: smooth curve, curvature, implicit definition of a curve, touching $k$-plane of a curve, Beltrami theorem.
@article{IVM_2021_11_a5,
     author = {A.M. Shelekhov},
     title = {On the curvatures of a curve in $n$-dimensional {Euclidean} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {54--66},
     publisher = {mathdoc},
     number = {11},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_11_a5/}
}
TY  - JOUR
AU  - A.M. Shelekhov
TI  - On the curvatures of a curve in $n$-dimensional Euclidean space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 54
EP  - 66
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_11_a5/
LA  - ru
ID  - IVM_2021_11_a5
ER  - 
%0 Journal Article
%A A.M. Shelekhov
%T On the curvatures of a curve in $n$-dimensional Euclidean space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 54-66
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_11_a5/
%G ru
%F IVM_2021_11_a5
A.M. Shelekhov. On the curvatures of a curve in $n$-dimensional Euclidean space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2021), pp. 54-66. http://geodesic.mathdoc.fr/item/IVM_2021_11_a5/

[1] Jordan C., “Sur la téorie des courbes dans l'espace à n dimensions”, Oeuvres, 4, Gauthier-Villars, et Blanchard, Paris, 1964, 337–339

[2] Goldman R., “Curvature formulas for implicit curves and surfaces”, Comput. Aided Geometric Design, 22:7 (2005), 632–658 | DOI | Zbl

[3] Rozenfeld B. A., Mnogomernye prostranstva, Nauka, M., 1966