A solution to a boundary-value problem for integro-differential equations with weakly singular kernels
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2021), pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear boundary value problem for a system of integro-differential equations with weakly singular kernels is considered. Questions of the unique solvability and the construction of algorithms for finding solution of the considered problem are studied. Conditions for the solvability of the boundary value problem for a system of integro-differential equations with weakly singular kernels are established using the Dzhumabaev parametrization method based on splitting the interval and introducing additional parameters. Necessary and sufficient conditions for the solvability of the two-point problem for the integro-differential equations with weakly singular kernels are received.
Keywords: integro-differential equation, linear boundary value problem, kernel with weakly singularity, Dzhumabaev parameterization method, solvability.
@article{IVM_2021_11_a0,
     author = {A. T. Assanova and Sh. N. Nurmukanbet},
     title = {A solution to a boundary-value problem for integro-differential equations with weakly singular kernels},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--15},
     publisher = {mathdoc},
     number = {11},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_11_a0/}
}
TY  - JOUR
AU  - A. T. Assanova
AU  - Sh. N. Nurmukanbet
TI  - A solution to a boundary-value problem for integro-differential equations with weakly singular kernels
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 3
EP  - 15
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_11_a0/
LA  - ru
ID  - IVM_2021_11_a0
ER  - 
%0 Journal Article
%A A. T. Assanova
%A Sh. N. Nurmukanbet
%T A solution to a boundary-value problem for integro-differential equations with weakly singular kernels
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 3-15
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_11_a0/
%G ru
%F IVM_2021_11_a0
A. T. Assanova; Sh. N. Nurmukanbet. A solution to a boundary-value problem for integro-differential equations with weakly singular kernels. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2021), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2021_11_a0/

[1] Brunner H., Collocation methods for Volterra integral and related functional equations, Cambridge University Press, Cambridge, 2004 | Zbl

[2] Dzhumabaev D. S., “Ob odnom metode resheniya lineinoi kraevoi zadachi dlya integrodifferentsialnogo uravneniya”, Zhurn. vychisl. matem. i matem. fiziki, 50:7 (2010), 1209–1221 | Zbl

[3] Dzhumabaev D. S., Bakirova E. A., “Priznaki korrektnoi razreshimosti lineinoi dvukhtochechnoi kraevoi zadachi dlya sistem integro-differentsialnykh uravnenii”, Differents. uravneniya, 46:4 (2010), 550–564 | Zbl

[4] Dzhumabaev D. S., Bakirova E. A., “O priznakakh odnoznachnoi razreshimosti lineinoi dvukhtochechnoi kraevoi zadachi dlya sistem integro-differentsialnykh uravnenii”, Differents. uravneniya, 49:9 (2013), 1125–1140 | Zbl

[5] Dzhumabaev D. S., Bakirova E. A., “On unique solvability of a boundary-value problem for Fredholm intergo-differential equations with degenerate kernel”, J. of Math. Sci., 220:3 (2017), 440–460 | DOI | Zbl

[6] Dzhumabaev D. S., “Ob odnom algoritme nakhozhdeniya resheniya kraevoi zadachi dlya integro-differentsialnogo uravneniya”, Zhurn. vychisl. matem. i matem. fiziki, 53:6 (2013), 914–937 | Zbl

[7] Dzhumabaev D. S., “Neobkhodimye i dostatochnye usloviya razreshimosti lineinykh kraevykh zadach dlya integro-differentsialnykh uravnenii Fredgolma”, Ukrainsk. matem. zhurn., 66:8 (2014), 1074–1091

[8] Dzhumabaev D. S., “Razreshimost lineinoi kraevoi zadachi dlya integro-differentsialnogo uravneniya Fredgolma s impulsnymi vozdeistviyami”, Differents. uravneniya, 51:9 (2015), 1189–1205 | Zbl

[9] Dzhumabaev D. S., “On one approach to solve the linear boundary value problems for Fredholm integro-differential equations”, J. Comput. Appl. Math., 294:2 (2016), 342–357 | DOI | Zbl

[10] Parts I., Pedas A., Tamme E., “Piecewise polynomial collocation for Fredholm integro-differential equations with weakly singular kernels”, SIAM J. Numer. Anal., 43:9 (2005), 1897–1911 | DOI | Zbl

[11] Pedas A., Tamme E., “Spline collocation method for integro-differential equations with weakly singular kernels”, J. Comput. Appl. Math., 197:2 (2006), 253–269 | DOI | Zbl

[12] Pedas A., Tamme E., “Discrete Galerkin method for Fredholm integro-differential equations with weakly singular kernels”, J. Comput. Appl. Math., 213:1 (2008), 111–126 | DOI | Zbl

[13] Kolk M., Pedas A., Vainikko G., “High-order methods for Volterra integral equations with general weak singularities”, Numer. Funct. Anal. Optim., 30:6 (2009), 1002–1024 | DOI | Zbl

[14] Kangro R., Tamme E., “On fully discrete collocation methods for solving weakly singular integro-differential equations”, Math. Model. Anal., 15:1 (2010), 69–82 | DOI | Zbl

[15] Orav-Puurand K., Pedas A., Vainikko G., “Nyström type methods for Fredholm integral equations with weak singularities”, J. Comput. Appl. Math., 234:10 (2010), 2848–2858 | DOI | Zbl

[16] Pedas A., Tamme E., “A discrete collocation method for Fredholm integro-differential equations with weakly singular kernels”, Appl. Numer. Math., 61:4 (2011), 738–751 | DOI | Zbl

[17] Pedas A., Tamme E., “Product Integration for Weakly Singular Integro-Differential Equations”, Math. Model. Anal., 16:1 (2011), 153–172 | DOI | Zbl

[18] Pedas A., Tamme E., “On the convergence of spline collocation methods for solving fractional differential equations”, J. Comput. Appl. Math., 235:12 (2011), 3502–3514 | DOI | Zbl

[19] Pedas A., Tamme E., “Piecewise polynomial collocation for linear boundary value problems of fractional differential equations”, J. Comput. Appl. Math., 236:12 (2012), 3349–3359 | DOI | Zbl

[20] Pedas A., Tamme E., “Numerical solution of nonlinear fractional differential equations by spline collocation methods”, J. Comput. Appl. Math., 255:1 (2014), 216–230 | DOI | Zbl

[21] Dzhumabaev D. S., “Priznaki odnoznachnoi razreshimosti lineinoi kraevoi zadachi dlya obyknovennogo differentsialnogo uravneniya”, Zhurn. vychisl. matem. i matem. fiziki, 29:1 (1989), 50–66 | Zbl

[22] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968