Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_11_a0, author = {A. T. Assanova and Sh. N. Nurmukanbet}, title = {A solution to a boundary-value problem for integro-differential equations with weakly singular kernels}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--15}, publisher = {mathdoc}, number = {11}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_11_a0/} }
TY - JOUR AU - A. T. Assanova AU - Sh. N. Nurmukanbet TI - A solution to a boundary-value problem for integro-differential equations with weakly singular kernels JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 3 EP - 15 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_11_a0/ LA - ru ID - IVM_2021_11_a0 ER -
%0 Journal Article %A A. T. Assanova %A Sh. N. Nurmukanbet %T A solution to a boundary-value problem for integro-differential equations with weakly singular kernels %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2021 %P 3-15 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2021_11_a0/ %G ru %F IVM_2021_11_a0
A. T. Assanova; Sh. N. Nurmukanbet. A solution to a boundary-value problem for integro-differential equations with weakly singular kernels. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2021), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2021_11_a0/
[1] Brunner H., Collocation methods for Volterra integral and related functional equations, Cambridge University Press, Cambridge, 2004 | Zbl
[2] Dzhumabaev D. S., “Ob odnom metode resheniya lineinoi kraevoi zadachi dlya integrodifferentsialnogo uravneniya”, Zhurn. vychisl. matem. i matem. fiziki, 50:7 (2010), 1209–1221 | Zbl
[3] Dzhumabaev D. S., Bakirova E. A., “Priznaki korrektnoi razreshimosti lineinoi dvukhtochechnoi kraevoi zadachi dlya sistem integro-differentsialnykh uravnenii”, Differents. uravneniya, 46:4 (2010), 550–564 | Zbl
[4] Dzhumabaev D. S., Bakirova E. A., “O priznakakh odnoznachnoi razreshimosti lineinoi dvukhtochechnoi kraevoi zadachi dlya sistem integro-differentsialnykh uravnenii”, Differents. uravneniya, 49:9 (2013), 1125–1140 | Zbl
[5] Dzhumabaev D. S., Bakirova E. A., “On unique solvability of a boundary-value problem for Fredholm intergo-differential equations with degenerate kernel”, J. of Math. Sci., 220:3 (2017), 440–460 | DOI | Zbl
[6] Dzhumabaev D. S., “Ob odnom algoritme nakhozhdeniya resheniya kraevoi zadachi dlya integro-differentsialnogo uravneniya”, Zhurn. vychisl. matem. i matem. fiziki, 53:6 (2013), 914–937 | Zbl
[7] Dzhumabaev D. S., “Neobkhodimye i dostatochnye usloviya razreshimosti lineinykh kraevykh zadach dlya integro-differentsialnykh uravnenii Fredgolma”, Ukrainsk. matem. zhurn., 66:8 (2014), 1074–1091
[8] Dzhumabaev D. S., “Razreshimost lineinoi kraevoi zadachi dlya integro-differentsialnogo uravneniya Fredgolma s impulsnymi vozdeistviyami”, Differents. uravneniya, 51:9 (2015), 1189–1205 | Zbl
[9] Dzhumabaev D. S., “On one approach to solve the linear boundary value problems for Fredholm integro-differential equations”, J. Comput. Appl. Math., 294:2 (2016), 342–357 | DOI | Zbl
[10] Parts I., Pedas A., Tamme E., “Piecewise polynomial collocation for Fredholm integro-differential equations with weakly singular kernels”, SIAM J. Numer. Anal., 43:9 (2005), 1897–1911 | DOI | Zbl
[11] Pedas A., Tamme E., “Spline collocation method for integro-differential equations with weakly singular kernels”, J. Comput. Appl. Math., 197:2 (2006), 253–269 | DOI | Zbl
[12] Pedas A., Tamme E., “Discrete Galerkin method for Fredholm integro-differential equations with weakly singular kernels”, J. Comput. Appl. Math., 213:1 (2008), 111–126 | DOI | Zbl
[13] Kolk M., Pedas A., Vainikko G., “High-order methods for Volterra integral equations with general weak singularities”, Numer. Funct. Anal. Optim., 30:6 (2009), 1002–1024 | DOI | Zbl
[14] Kangro R., Tamme E., “On fully discrete collocation methods for solving weakly singular integro-differential equations”, Math. Model. Anal., 15:1 (2010), 69–82 | DOI | Zbl
[15] Orav-Puurand K., Pedas A., Vainikko G., “Nyström type methods for Fredholm integral equations with weak singularities”, J. Comput. Appl. Math., 234:10 (2010), 2848–2858 | DOI | Zbl
[16] Pedas A., Tamme E., “A discrete collocation method for Fredholm integro-differential equations with weakly singular kernels”, Appl. Numer. Math., 61:4 (2011), 738–751 | DOI | Zbl
[17] Pedas A., Tamme E., “Product Integration for Weakly Singular Integro-Differential Equations”, Math. Model. Anal., 16:1 (2011), 153–172 | DOI | Zbl
[18] Pedas A., Tamme E., “On the convergence of spline collocation methods for solving fractional differential equations”, J. Comput. Appl. Math., 235:12 (2011), 3502–3514 | DOI | Zbl
[19] Pedas A., Tamme E., “Piecewise polynomial collocation for linear boundary value problems of fractional differential equations”, J. Comput. Appl. Math., 236:12 (2012), 3349–3359 | DOI | Zbl
[20] Pedas A., Tamme E., “Numerical solution of nonlinear fractional differential equations by spline collocation methods”, J. Comput. Appl. Math., 255:1 (2014), 216–230 | DOI | Zbl
[21] Dzhumabaev D. S., “Priznaki odnoznachnoi razreshimosti lineinoi kraevoi zadachi dlya obyknovennogo differentsialnogo uravneniya”, Zhurn. vychisl. matem. i matem. fiziki, 29:1 (1989), 50–66 | Zbl
[22] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968