Some inequalities between the best polynomial approximation and averaged finite-difference norms in space $L_2$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2021), pp. 78-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact constants are found in inequalities type Jackson-Stechkin for smoothness characte-ristics $\Lambda_{m}(f), m \in\mathbb{N} $ determined by averaging the norm in $L_{2}$ of finite differences of the $m$-th order of the functions $f$. For function classes, defined by the smoothness characteristic $\Lambda_{m}(f)$, and the majorant $\Phi $ satisfying a certain condition, calculated the exact values of different $n$-widths.
Keywords: best approximations, finite differences of the $m$-th order, smoothness characteristic, $n$-widths.
@article{IVM_2021_10_a6,
     author = {M. Sh. Shabozov and M. A. Abdulkhaminov},
     title = {Some inequalities between the best polynomial approximation and averaged finite-difference norms in space $L_2$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {78--91},
     publisher = {mathdoc},
     number = {10},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_10_a6/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - M. A. Abdulkhaminov
TI  - Some inequalities between the best polynomial approximation and averaged finite-difference norms in space $L_2$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 78
EP  - 91
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_10_a6/
LA  - ru
ID  - IVM_2021_10_a6
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A M. A. Abdulkhaminov
%T Some inequalities between the best polynomial approximation and averaged finite-difference norms in space $L_2$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 78-91
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_10_a6/
%G ru
%F IVM_2021_10_a6
M. Sh. Shabozov; M. A. Abdulkhaminov. Some inequalities between the best polynomial approximation and averaged finite-difference norms in space $L_2$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2021), pp. 78-91. http://geodesic.mathdoc.fr/item/IVM_2021_10_a6/

[1] Ditzian Z., Totik V., Moduli of Smoothness, Comput. Math., 9, Springer, New York, 1997

[2] Sendov B., Popov V., Usrednennye moduli gladkosti, Mir, M., 1988

[3] Runovskii K. V., “O priblizhenii semeistvami lineinykh polinomialnykh operatorov v prostranstve $L_{p},\ 0

1$”, Matem. sb., 185:8 (1994), 81–102 | Zbl

[4] Pustovoitov N. P., “Otsenka nailuchshikh priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami cherez usrednennye raznosti i mnogomernaya teorema Dzheksona”, Matem. sb., 188:10 (1997), 95–108 | Zbl

[5] Shabozov M. Sh., Vakarchuk S. B., Zabutnaya V. I., “Tochnye neravenstva tipa Dzheksona–Stechkina dlya periodicheskikh funktsii v $L_{2}$ i znacheniya poperechnikov klassov funktsii”, Dokl. RAN, 451:6 (2013), 625–628 | Zbl

[6] Abilov V. A., Abilova F. V., “Nekotorye voprosy priblizheniya $2\pi$-periodicheskikh funktsii summami Fure v prostranstve $L_{2}(2\pi)$”, Matem. zametki, 76:6 (2004), 803–811 | Zbl

[7] Shabozov M. Sh., Yusupov G. A., “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya poperechnikov nekotorykh klassov funktsii v $L_2$”, Sib. matem. zhurn., 52:6 (2011), 1414–1427 | Zbl

[8] Vakarchuk S. B., Zabutnaya V. I., “Neravenstva tipa Dzheksona–Stechkina dlya spetsialnykh modulei nepreryvnosti i poperechniki funktsionalnykh klassov v prostranstve $L_{2}$”, Matem. zametki, 92:4 (2012), 497–514 | Zbl

[9] Shabozov M. Sh., Tukhliev K., “Nailuchshie polinomialnye priblizheniya i poperechniki nekotorykh funktsionalnykh klassov v $L_{2}$”, Matem. zametki, 94:6 (2013), 908–917 | Zbl

[10] Vakarchuk S. B., Zabutnaya V. I., “Neravenstva mezhdu nailuchshimi polinomialnymi priblizheniyami i nekotorymi kharakteristikami gladkosti v prostranstve $L_{2}$ i poperechniki klassov funktsii”, Matem. zametki, 99:2 (2016), 215–238 | Zbl

[11] Shabozov M. Sh., Shabozova A. A., “Nekotorye tochnye neravenstva tipa Dzheksona–Stechkina dlya periodicheskikh differentsiruemykh v smysle Veilya funktsii v $L_2$”, Tr. IMM UrO RAN, 25, no. 4, 2019, 255–264

[12] Babaenko A. G., “O neravenstve Dzheksona–Stechkina dlya nailuchshikh $L^{2}$-priblizhenii funktsii trigonometricheskimi polinomami”, Teoriya priblizhenii. Asimptoticheskie razlozheniya, Tr. IMM UrO RAN, 7, 2001, 30–46

[13] Vasilev S. N., “Neravenstvo Dzheksona–Stechkina v $L_{2}[-\pi,\pi]$”, Teoriya priblizhenii. Asimptoticheskie razlozheniya, Tr. IMM UrO RAN, 7, 2001, 75–84

[14] Kozko A. I., Rozhdestvenskii A. V., “O neravenstve Dzheksona v $L_2$ s obobschennym modulem nepreryvnosti”, Matem. sb., 195:8 (2004), 3–46 | Zbl

[15] Taikov L. V., “Neravenstva, soderzhaschie nailuchshie priblizheniya i modul nepreryvnosti funktsii iz $L_2$”, Matem. zametki, 20:3 (1976), 433–438 | Zbl