Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_10_a6, author = {M. Sh. Shabozov and M. A. Abdulkhaminov}, title = {Some inequalities between the best polynomial approximation and averaged finite-difference norms in space $L_2$}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {78--91}, publisher = {mathdoc}, number = {10}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_10_a6/} }
TY - JOUR AU - M. Sh. Shabozov AU - M. A. Abdulkhaminov TI - Some inequalities between the best polynomial approximation and averaged finite-difference norms in space $L_2$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 78 EP - 91 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_10_a6/ LA - ru ID - IVM_2021_10_a6 ER -
%0 Journal Article %A M. Sh. Shabozov %A M. A. Abdulkhaminov %T Some inequalities between the best polynomial approximation and averaged finite-difference norms in space $L_2$ %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2021 %P 78-91 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2021_10_a6/ %G ru %F IVM_2021_10_a6
M. Sh. Shabozov; M. A. Abdulkhaminov. Some inequalities between the best polynomial approximation and averaged finite-difference norms in space $L_2$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2021), pp. 78-91. http://geodesic.mathdoc.fr/item/IVM_2021_10_a6/