Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_10_a6, author = {M. Sh. Shabozov and M. A. Abdulkhaminov}, title = {Some inequalities between the best polynomial approximation and averaged finite-difference norms in space $L_2$}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {78--91}, publisher = {mathdoc}, number = {10}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_10_a6/} }
TY - JOUR AU - M. Sh. Shabozov AU - M. A. Abdulkhaminov TI - Some inequalities between the best polynomial approximation and averaged finite-difference norms in space $L_2$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 78 EP - 91 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_10_a6/ LA - ru ID - IVM_2021_10_a6 ER -
%0 Journal Article %A M. Sh. Shabozov %A M. A. Abdulkhaminov %T Some inequalities between the best polynomial approximation and averaged finite-difference norms in space $L_2$ %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2021 %P 78-91 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2021_10_a6/ %G ru %F IVM_2021_10_a6
M. Sh. Shabozov; M. A. Abdulkhaminov. Some inequalities between the best polynomial approximation and averaged finite-difference norms in space $L_2$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2021), pp. 78-91. http://geodesic.mathdoc.fr/item/IVM_2021_10_a6/
[1] Ditzian Z., Totik V., Moduli of Smoothness, Comput. Math., 9, Springer, New York, 1997
[2] Sendov B., Popov V., Usrednennye moduli gladkosti, Mir, M., 1988
[3] Runovskii K. V., “O priblizhenii semeistvami lineinykh polinomialnykh operatorov v prostranstve $L_{p},\ 0
1$”, Matem. sb., 185:8 (1994), 81–102 | Zbl[4] Pustovoitov N. P., “Otsenka nailuchshikh priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami cherez usrednennye raznosti i mnogomernaya teorema Dzheksona”, Matem. sb., 188:10 (1997), 95–108 | Zbl
[5] Shabozov M. Sh., Vakarchuk S. B., Zabutnaya V. I., “Tochnye neravenstva tipa Dzheksona–Stechkina dlya periodicheskikh funktsii v $L_{2}$ i znacheniya poperechnikov klassov funktsii”, Dokl. RAN, 451:6 (2013), 625–628 | Zbl
[6] Abilov V. A., Abilova F. V., “Nekotorye voprosy priblizheniya $2\pi$-periodicheskikh funktsii summami Fure v prostranstve $L_{2}(2\pi)$”, Matem. zametki, 76:6 (2004), 803–811 | Zbl
[7] Shabozov M. Sh., Yusupov G. A., “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya poperechnikov nekotorykh klassov funktsii v $L_2$”, Sib. matem. zhurn., 52:6 (2011), 1414–1427 | Zbl
[8] Vakarchuk S. B., Zabutnaya V. I., “Neravenstva tipa Dzheksona–Stechkina dlya spetsialnykh modulei nepreryvnosti i poperechniki funktsionalnykh klassov v prostranstve $L_{2}$”, Matem. zametki, 92:4 (2012), 497–514 | Zbl
[9] Shabozov M. Sh., Tukhliev K., “Nailuchshie polinomialnye priblizheniya i poperechniki nekotorykh funktsionalnykh klassov v $L_{2}$”, Matem. zametki, 94:6 (2013), 908–917 | Zbl
[10] Vakarchuk S. B., Zabutnaya V. I., “Neravenstva mezhdu nailuchshimi polinomialnymi priblizheniyami i nekotorymi kharakteristikami gladkosti v prostranstve $L_{2}$ i poperechniki klassov funktsii”, Matem. zametki, 99:2 (2016), 215–238 | Zbl
[11] Shabozov M. Sh., Shabozova A. A., “Nekotorye tochnye neravenstva tipa Dzheksona–Stechkina dlya periodicheskikh differentsiruemykh v smysle Veilya funktsii v $L_2$”, Tr. IMM UrO RAN, 25, no. 4, 2019, 255–264
[12] Babaenko A. G., “O neravenstve Dzheksona–Stechkina dlya nailuchshikh $L^{2}$-priblizhenii funktsii trigonometricheskimi polinomami”, Teoriya priblizhenii. Asimptoticheskie razlozheniya, Tr. IMM UrO RAN, 7, 2001, 30–46
[13] Vasilev S. N., “Neravenstvo Dzheksona–Stechkina v $L_{2}[-\pi,\pi]$”, Teoriya priblizhenii. Asimptoticheskie razlozheniya, Tr. IMM UrO RAN, 7, 2001, 75–84
[14] Kozko A. I., Rozhdestvenskii A. V., “O neravenstve Dzheksona v $L_2$ s obobschennym modulem nepreryvnosti”, Matem. sb., 195:8 (2004), 3–46 | Zbl
[15] Taikov L. V., “Neravenstva, soderzhaschie nailuchshie priblizheniya i modul nepreryvnosti funktsii iz $L_2$”, Matem. zametki, 20:3 (1976), 433–438 | Zbl