Initial-boundary value problems for equation of oscillation of a rectangular plate
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2021), pp. 60-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates problems with initial conditions for the equation of vibrations of a rectangular plate with different boundary conditions. An energy inequality is established, which implies the uniqueness of the solution of the three initial-boundary value problems. In the case of a hinged plate at the edges, existence and stability theorems for the solution of the problem in the classes of regular and generalized solutions are proved.
Keywords: equation of vibrations of a rectangular plate, initial boundary value problems, energy inequality, uniqueness, series, stability.
Mots-clés : existence
@article{IVM_2021_10_a4,
     author = {K. B. Sabitov},
     title = {Initial-boundary value problems for equation of oscillation of a rectangular plate},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {60--70},
     publisher = {mathdoc},
     number = {10},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_10_a4/}
}
TY  - JOUR
AU  - K. B. Sabitov
TI  - Initial-boundary value problems for equation of oscillation of a rectangular plate
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 60
EP  - 70
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_10_a4/
LA  - ru
ID  - IVM_2021_10_a4
ER  - 
%0 Journal Article
%A K. B. Sabitov
%T Initial-boundary value problems for equation of oscillation of a rectangular plate
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 60-70
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_10_a4/
%G ru
%F IVM_2021_10_a4
K. B. Sabitov. Initial-boundary value problems for equation of oscillation of a rectangular plate. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2021), pp. 60-70. http://geodesic.mathdoc.fr/item/IVM_2021_10_a4/

[1] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966

[2] Timoshenko S. P., Kolebaniya v inzhenernom dele, Mashinostroenie, M., 1967

[3] Guld S., Variatsionnye metody v zadachakh o sobstvennykh znacheniyakh: vvedenie v metod promezhutochnykh zadach Vainshteina, Mir, M., 1970

[4] Andrianov I. V., Danishevskii V. V., Ivankov A. O., Asimptoticheskie metody v teorii kolebanii balok i plastin, Pridneprovskaya gosudarstvennaya akademiya stroitelstva i arkhitektury, Dnepropetrovsk, 2010

[5] Sabitov K. B., “Kolebaniya balki s zadelannymi kontsami”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 19:2 (2015), 311–324 | Zbl

[6] Sabitov K. B., “K teorii nachalno-granichnykh zadach dlya uravneniya sterzhnei i balok”, Differents. uravneniya, 53:1 (2017), 89–100 | Zbl

[7] Sabitov K.B, “Nachalnaya zadacha dlya uravneniya kolebanii balok”, Differents. uravneniya, 53:5 (2017), 665–671 | Zbl

[8] Sabitov K. B., Akimov A. A., “Nachalno-granichnaya zadacha dlya nelineinogo uravneniya kolebanii balki”, Differents. uravneniya, 56:5 (2020), 632–645 | Zbl

[9] Sabitov K. B., “Obratnye zadachi dlya uravneniya kolebanii balki po opredeleniyu pravoi chasti i nachalnykh uslovii”, Differents. uravneniya, 56:6 (2020), 773–785 | Zbl

[10] Sabitov K. B., Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2013

[11] Ilin V. A., Sadovnichii V. A., Sendov B. Kh., Matematicheskii analiz, v. 2, Izd-vo MGU, M., 1985