Modified Bianchi equation with nonlinear right-hand side
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2021), pp. 51-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a nonlinear Bianchi equation which contains power nonlinearities in unknown function and its first derivatives. The method of separation of variables is used for investigation. An exponential solution is found in the case of an autonomous equation with linearly homogeneous right-hand side. It is shown that the equation has a solution in the form of a polylinear function in the case when the right-hand side of the equation contains the product of power functions of independent variables. Also, we have found solutions in the form of linear combination of exponents and in the form of generalized polynomials. The conditions on the parameters of the equation are given under which the above-mentioned solutions exist. Theorems determining the possibility of decreasing the dimension of the equation are proved. In particular, the initial equation is reduced to an ordinary differential equation for the solutions in the form of one- dimensional traveling waves, and it is reduced to a partial differential equation of lesser dimension for the solutions in the form of multi-dimensional traveling waves. In the latter case, a solution is found in the form of a generalized polynomial in linear combinations of independent variables.
Mots-clés : Bianci equation
Keywords: linear differential operator, separation of variables, power nonlinearity.
@article{IVM_2021_10_a3,
     author = {I. V. Rakhmelevich},
     title = {Modified {Bianchi} equation with nonlinear right-hand side},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {51--59},
     publisher = {mathdoc},
     number = {10},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_10_a3/}
}
TY  - JOUR
AU  - I. V. Rakhmelevich
TI  - Modified Bianchi equation with nonlinear right-hand side
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 51
EP  - 59
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_10_a3/
LA  - ru
ID  - IVM_2021_10_a3
ER  - 
%0 Journal Article
%A I. V. Rakhmelevich
%T Modified Bianchi equation with nonlinear right-hand side
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 51-59
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_10_a3/
%G ru
%F IVM_2021_10_a3
I. V. Rakhmelevich. Modified Bianchi equation with nonlinear right-hand side. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2021), pp. 51-59. http://geodesic.mathdoc.fr/item/IVM_2021_10_a3/

[1] Bondarenko B. A., Bazisnye sistemy polinomialnykh i kvazipolinomialnykh reshenii uravnenii v chastnykh proizvodnykh, FAN, Tashkent, 1987

[2] Zhegalov V. I., Mironov A. N., Differentsialnye uravneniya so starshimi chastnymi proizvodnymi, Kazansk. matem. o-vo, Kazan, 2001

[3] Utkina E. A., “Ob odnom differentsialnom uravnenii so starshei chastnoi proizvodnoi v trekhmernom prostranstve”, Differents. uravneniya, 41:5 (2005), 697–701 | Zbl

[4] Mironov A. N., “Metod Rimana dlya uravnenii so starshei chastnoi proizvodnoi v $R^n$”, Sib. matem. zhurn., 47:3 (2006), 584–594 | Zbl

[5] Zhegalov V. I., Tikhonova O. A., “Faktorizatsiya uravnenii s dominiruyuschei starshei chastnoi proizvodnoi”, Differents. uravneniya, 50:1 (2014), 66–72 | Zbl

[6] Rakhmelevich I. V., “O resheniyakh mnogomernogo differentsialnogo uravneniya proizvolnogo poryadka so smeshannoi starshei chastnoi proizvodnoi i stepennymi nelineinostyami”, Vladikavkazsk. matem. zhurn., 18:4 (2016), 41–49 | Zbl

[7] Polyanin A. D., Zaitsev V. F., Zhurov A. I., Metody resheniya nelineinykh uravnenii matematicheskoi fiziki i mekhaniki, Fizmatlit, M., 2005

[8] Polyanin A. D., Zhurov A. I., Metody razdeleniya peremennykh i tochnye resheniya nelineinykh uravnenii matematicheskoi fiziki, IPMekh RAN, M., 2020

[9] Polyanin A. D., Zaitsev V. F., Handbook of Nonlinear Partial Differential Equations, 2, Chapman and Hall, Boca Raton; CRC Press, London, 2012

[10] Rakhmelevich I. V., “O mnogomernykh uravneniyakh v chastnykh proizvodnykh so stepennymi nelineinostyami po pervym proizvodnym”, Ufimsk. matem. zhurn., 9:1 (2017), 98–108 | Zbl