Approximate calculation of the coefficients of the Dulac series
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2021), pp. 37-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm for the approximate calculation of the coefficients of the Dulac series (asymptotic series of the monodromy transformation) in the space of vector fields with a Newton diagram containing more than one edge and a monodromic singular point is proposed. The conditions for the applicability of this algorithm are obtained. The algorithm is implemented in the MAPLE package. Examples are given for the case of a Newton diagram consisting of two edges.
Mots-clés : Monodromic singular point, monodromy transformation
Keywords: focus, center, Dulac series, correspondence mapping, Newton diagram, asymptotic representation, Hadamard integral.
@article{IVM_2021_10_a2,
     author = {N. B. Medvedeva},
     title = {Approximate calculation of the coefficients of the {Dulac} series},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {37--50},
     publisher = {mathdoc},
     number = {10},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_10_a2/}
}
TY  - JOUR
AU  - N. B. Medvedeva
TI  - Approximate calculation of the coefficients of the Dulac series
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 37
EP  - 50
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_10_a2/
LA  - ru
ID  - IVM_2021_10_a2
ER  - 
%0 Journal Article
%A N. B. Medvedeva
%T Approximate calculation of the coefficients of the Dulac series
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 37-50
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_10_a2/
%G ru
%F IVM_2021_10_a2
N. B. Medvedeva. Approximate calculation of the coefficients of the Dulac series. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2021), pp. 37-50. http://geodesic.mathdoc.fr/item/IVM_2021_10_a2/

[1] Medvedeva N. B., “Ob analiticheskoi razreshimosti problemy razlicheniya tsentra i fokusa”, Tr. MIAN, 254, 2006, 11–100 | Zbl

[2] Arnold V. I., Ilyashenko Yu. S., Obyknovennye differentsialnye uravneniya, Itogi nauki i tekhn. Sovremenn. probl. matem. Fundament. napravleniya, 1, VINITI AN SSSR, M., 149 pp.

[3] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, GITTL, M.–L., 1947

[4] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, GITTL, M.–L., 1950

[5] Lyapunov A. M., “Issledovanie odnogo iz osobennykh sluchaev zadachi ob ustoichivosti dvizheniya.”, Sobr. soch., v. 2, Izd-vo AN SSSR, M.–L., 1956, 272–331

[6] Moussu R., “Symmetrie et forme normale des centres et foyers degeneres”, Ergod. Th. Dynam. Syst., 2 (1982), 241–251 | DOI | Zbl

[7] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, GITTL, M.–L., 1947

[8] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979

[9] Varin V. P., “Otobrazhenie posledovaniya nekotorykh polinomialnykh sistem differentsialnykh uravnenii”, Matem. sb., 195:7 (2004), 3–20 | Zbl

[10] Ilyashenko Yu. S., “Memuar Dyulaka «O predelnykh tsiklakh» i smezhnye voprosy lokalnoi teorii differentsialnykh uravnenii”, UMN, 40:6 (1985), 41–78

[11] Medvedeva N. B., “Glavnyi chlen preobrazovaniya monodromii monodromnoi osoboi tochki lineen”, Sib. matem. zhurn., 33:2 (1992), 116–124 | Zbl

[12] Medvedeva N. B., “Problema razlicheniya tsentra i fokusa v prostranstve vektornykh polei s fiksirovannoi diagrammoi Nyutona”, Matem. sb., 211:10 (2020), 50–97 | Zbl

[13] Adamar Zh., Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978

[14] Medvedeva N. B., Viktorova V. A., “Priblizhennoe vychislenie integralov Adamara spetsialnogo vida”, Chelyabinsk. fiz.-matem. zhurn., 4:4 (2019), 398–411 | Zbl

[15] Medvedeva N. B., “Ob analiticheskoi nerazreshimosti problemy ustoichivosti na ploskosti”, UMN, 68:5 (413) (2013), 147–176 | Zbl

[16] Medvedeva N. B., “Kriterii monodromnosti osoboi tochki vektornogo polya na ploskosti”, Algebra i an., 13:2 (2001), 130–150

[17] Cherginets D. N., “Funktsiya sootvetstviya dlya sistem s prostym sedlom”, Vestn. BGU. Ser. 1. Fizika. Matem. Informatika, 1 (2008), 71–76