Approximate calculation of the coefficients of the Dulac series
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2021), pp. 37-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algorithm for the approximate calculation of the coefficients of the Dulac series (asymptotic series of the monodromy transformation) in the space of vector fields with a Newton diagram containing more than one edge and a monodromic singular point is proposed. The conditions for the applicability of this algorithm are obtained. The algorithm is implemented in the MAPLE package. Examples are given for the case of a Newton diagram consisting of two edges.
Mots-clés : Monodromic singular point, monodromy transformation
Keywords: focus, center, Dulac series, correspondence mapping, Newton diagram, asymptotic representation, Hadamard integral.
@article{IVM_2021_10_a2,
     author = {N. B. Medvedeva},
     title = {Approximate calculation of the coefficients of the {Dulac} series},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {37--50},
     year = {2021},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_10_a2/}
}
TY  - JOUR
AU  - N. B. Medvedeva
TI  - Approximate calculation of the coefficients of the Dulac series
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 37
EP  - 50
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_10_a2/
LA  - ru
ID  - IVM_2021_10_a2
ER  - 
%0 Journal Article
%A N. B. Medvedeva
%T Approximate calculation of the coefficients of the Dulac series
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 37-50
%N 10
%U http://geodesic.mathdoc.fr/item/IVM_2021_10_a2/
%G ru
%F IVM_2021_10_a2
N. B. Medvedeva. Approximate calculation of the coefficients of the Dulac series. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2021), pp. 37-50. http://geodesic.mathdoc.fr/item/IVM_2021_10_a2/

[1] Medvedeva N. B., “Ob analiticheskoi razreshimosti problemy razlicheniya tsentra i fokusa”, Tr. MIAN, 254, 2006, 11–100 | Zbl

[2] Arnold V. I., Ilyashenko Yu. S., Obyknovennye differentsialnye uravneniya, Itogi nauki i tekhn. Sovremenn. probl. matem. Fundament. napravleniya, 1, VINITI AN SSSR, M., 149 pp.

[3] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, GITTL, M.–L., 1947

[4] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, GITTL, M.–L., 1950

[5] Lyapunov A. M., “Issledovanie odnogo iz osobennykh sluchaev zadachi ob ustoichivosti dvizheniya.”, Sobr. soch., v. 2, Izd-vo AN SSSR, M.–L., 1956, 272–331

[6] Moussu R., “Symmetrie et forme normale des centres et foyers degeneres”, Ergod. Th. Dynam. Syst., 2 (1982), 241–251 | DOI | Zbl

[7] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, GITTL, M.–L., 1947

[8] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979

[9] Varin V. P., “Otobrazhenie posledovaniya nekotorykh polinomialnykh sistem differentsialnykh uravnenii”, Matem. sb., 195:7 (2004), 3–20 | Zbl

[10] Ilyashenko Yu. S., “Memuar Dyulaka «O predelnykh tsiklakh» i smezhnye voprosy lokalnoi teorii differentsialnykh uravnenii”, UMN, 40:6 (1985), 41–78

[11] Medvedeva N. B., “Glavnyi chlen preobrazovaniya monodromii monodromnoi osoboi tochki lineen”, Sib. matem. zhurn., 33:2 (1992), 116–124 | Zbl

[12] Medvedeva N. B., “Problema razlicheniya tsentra i fokusa v prostranstve vektornykh polei s fiksirovannoi diagrammoi Nyutona”, Matem. sb., 211:10 (2020), 50–97 | Zbl

[13] Adamar Zh., Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978

[14] Medvedeva N. B., Viktorova V. A., “Priblizhennoe vychislenie integralov Adamara spetsialnogo vida”, Chelyabinsk. fiz.-matem. zhurn., 4:4 (2019), 398–411 | Zbl

[15] Medvedeva N. B., “Ob analiticheskoi nerazreshimosti problemy ustoichivosti na ploskosti”, UMN, 68:5 (413) (2013), 147–176 | Zbl

[16] Medvedeva N. B., “Kriterii monodromnosti osoboi tochki vektornogo polya na ploskosti”, Algebra i an., 13:2 (2001), 130–150

[17] Cherginets D. N., “Funktsiya sootvetstviya dlya sistem s prostym sedlom”, Vestn. BGU. Ser. 1. Fizika. Matem. Informatika, 1 (2008), 71–76