On the number of linearly independent solutions of the Riemann boundary value problem on the Riemann surface of an algebraic function
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2021), pp. 15-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a modified solution of the Riemann boundary value problem on a Riemann surface (R.S.) of an algebraic function kind $\rho$ is proposed. This allowed finding the number l of linearly independent algebraic functions (LIAF), that are multiples of a fractional divisor $Q$, to reduce to finding the number of LIAF that are multiples of an integer divisor $J$ (${\rm ord}\, J = \rho$). It provides a solution of the Jacobi inversion problem obtained in this paper. In this paper, we study the case when the exponents of the normal basis elements coincide, and the problem of finding the number of LIAF, multiples of an integer divisor, is solved. The definitions of conjugate points of R.S. and a hyperorder of a whole divisor are introduced. Depending on the structure of the divisor $J$, exact formulae are obtained for the number $l$, expressed in terms of the divisor $Q$ order, the hyperorder of the divisor $J$, and the numbers $\rho$ and $n$, where $n$ is the number of sheets of algebraic function R.S.
Keywords: Riemann boundary value problem, Riemann surface of an algebraic function, rank of a matrix.
@article{IVM_2021_10_a1,
     author = {V. E. Kruglov},
     title = {On the number of linearly independent solutions of the {Riemann} boundary value problem on the {Riemann} surface of an algebraic function},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {15--36},
     publisher = {mathdoc},
     number = {10},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_10_a1/}
}
TY  - JOUR
AU  - V. E. Kruglov
TI  - On the number of linearly independent solutions of the Riemann boundary value problem on the Riemann surface of an algebraic function
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 15
EP  - 36
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_10_a1/
LA  - ru
ID  - IVM_2021_10_a1
ER  - 
%0 Journal Article
%A V. E. Kruglov
%T On the number of linearly independent solutions of the Riemann boundary value problem on the Riemann surface of an algebraic function
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 15-36
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_10_a1/
%G ru
%F IVM_2021_10_a1
V. E. Kruglov. On the number of linearly independent solutions of the Riemann boundary value problem on the Riemann surface of an algebraic function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2021), pp. 15-36. http://geodesic.mathdoc.fr/item/IVM_2021_10_a1/

[1] Zverovich E. I., “Kraevye zadachi teorii analiticheskikh funktsii v gelderovskikh klassakh na rimanovykh poverkhnostyakh”, UMN, 26:1 (1971), 113–179 | Zbl

[2] Chebotarev N. G., Teoriya algebraicheskikh funktsii, OGIZ, M.–L., 1948

[3] Kruglov V. E., “Abelevy differentsialy i uravneniya poverkhnosti, zadannye tsiklicheskoi gruppoi podstanovok”, Soobschenie AN GSSR, 92:3 (1978), 537–540 | Zbl

[4] Kruglov V. E., “Chastnye indeksy, abelevy differentsialy pervogo roda i uravnenie poverkhnosti, zadannye konechnoi abelevoi gruppoi podstanovok”, Sib. matem. zhurn., 22:6 (1981), 87–101 | Zbl

[5] Kruglov V. E., “Chastnye indeksy i odno prilozhenie faktorizatsii nekotorykh matrits podstanovochnogo tipa ne vyshe chetvertogo poryadka I-III”, Sib. matem. zhurn., 24:2 (1983), 200–201; Деп. ВИНИТИ No 3278–82 Деп. ; Деп. ВИНИТИ No 3279–82 Деп. ; Деп. ВИНИТИ No 3280–82 Деп. | Zbl

[6] Shtin S. L., Postroenie osnovnykh funktsionalov rimanovykh poverkhnostei i gipoteza V. E. Kruglova o gruppakh podstanovochnykh matrits, Dis. kand. fiz.-matem. nauk, Minsk, 1998

[7] Vekua N. P., Sistemy singulyarnykh integralnykh uravnenii, Nauka, M., 1970

[8] Kruglov V. E., “O strukture chastnykh indeksov zadachi Rimana s matritsami podstanovochnogo tipa”, Matem. zametki, 35:2 (1984), 169–176 | Zbl

[9] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968

[10] Hensel K., Landsberg G., Theorie der abelschen Funktionen einer Variablen, Lpz, Teubner, 1902

[11] Kruglov V. E., “O svoistvakh yadra Genzelya–Landsberga na rimanovykh poverkhnostyakh algebraicheskikh funktsii”, TFKP i kraevye zadachi, Cheboksary, 1974, 78–87

[12] Kruglov V. E., “Ob algebraicheskikh funktsiyakh, kratnykh zadannomu divizoru”, DAN SSSR, 321:1 (1991), 11–13 | Zbl

[13] Kruglov V. E., “O faktorizatsii matrits podstanovochnogo tipa”, Ukr. matem. zhurn., 46:11 (1994), 1473–1478 | Zbl

[14] Kruglov V. E., “Reshenie zadachi Rimana na odnoi n-listnoi rimanovoi poverkhnosti”, Matem. issledovaniya, 9:2 (1974), 230–236 | Zbl