Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_10_a1, author = {V. E. Kruglov}, title = {On the number of linearly independent solutions of the {Riemann} boundary value problem on the {Riemann} surface of an algebraic function}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {15--36}, publisher = {mathdoc}, number = {10}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_10_a1/} }
TY - JOUR AU - V. E. Kruglov TI - On the number of linearly independent solutions of the Riemann boundary value problem on the Riemann surface of an algebraic function JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 15 EP - 36 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_10_a1/ LA - ru ID - IVM_2021_10_a1 ER -
%0 Journal Article %A V. E. Kruglov %T On the number of linearly independent solutions of the Riemann boundary value problem on the Riemann surface of an algebraic function %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2021 %P 15-36 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2021_10_a1/ %G ru %F IVM_2021_10_a1
V. E. Kruglov. On the number of linearly independent solutions of the Riemann boundary value problem on the Riemann surface of an algebraic function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2021), pp. 15-36. http://geodesic.mathdoc.fr/item/IVM_2021_10_a1/
[1] Zverovich E. I., “Kraevye zadachi teorii analiticheskikh funktsii v gelderovskikh klassakh na rimanovykh poverkhnostyakh”, UMN, 26:1 (1971), 113–179 | Zbl
[2] Chebotarev N. G., Teoriya algebraicheskikh funktsii, OGIZ, M.–L., 1948
[3] Kruglov V. E., “Abelevy differentsialy i uravneniya poverkhnosti, zadannye tsiklicheskoi gruppoi podstanovok”, Soobschenie AN GSSR, 92:3 (1978), 537–540 | Zbl
[4] Kruglov V. E., “Chastnye indeksy, abelevy differentsialy pervogo roda i uravnenie poverkhnosti, zadannye konechnoi abelevoi gruppoi podstanovok”, Sib. matem. zhurn., 22:6 (1981), 87–101 | Zbl
[5] Kruglov V. E., “Chastnye indeksy i odno prilozhenie faktorizatsii nekotorykh matrits podstanovochnogo tipa ne vyshe chetvertogo poryadka I-III”, Sib. matem. zhurn., 24:2 (1983), 200–201; Деп. ВИНИТИ No 3278–82 Деп. ; Деп. ВИНИТИ No 3279–82 Деп. ; Деп. ВИНИТИ No 3280–82 Деп. | Zbl
[6] Shtin S. L., Postroenie osnovnykh funktsionalov rimanovykh poverkhnostei i gipoteza V. E. Kruglova o gruppakh podstanovochnykh matrits, Dis. kand. fiz.-matem. nauk, Minsk, 1998
[7] Vekua N. P., Sistemy singulyarnykh integralnykh uravnenii, Nauka, M., 1970
[8] Kruglov V. E., “O strukture chastnykh indeksov zadachi Rimana s matritsami podstanovochnogo tipa”, Matem. zametki, 35:2 (1984), 169–176 | Zbl
[9] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968
[10] Hensel K., Landsberg G., Theorie der abelschen Funktionen einer Variablen, Lpz, Teubner, 1902
[11] Kruglov V. E., “O svoistvakh yadra Genzelya–Landsberga na rimanovykh poverkhnostyakh algebraicheskikh funktsii”, TFKP i kraevye zadachi, Cheboksary, 1974, 78–87
[12] Kruglov V. E., “Ob algebraicheskikh funktsiyakh, kratnykh zadannomu divizoru”, DAN SSSR, 321:1 (1991), 11–13 | Zbl
[13] Kruglov V. E., “O faktorizatsii matrits podstanovochnogo tipa”, Ukr. matem. zhurn., 46:11 (1994), 1473–1478 | Zbl
[14] Kruglov V. E., “Reshenie zadachi Rimana na odnoi n-listnoi rimanovoi poverkhnosti”, Matem. issledovaniya, 9:2 (1974), 230–236 | Zbl