Approximations of conjugate functions by partial sums of conjugate Fourier series with respect to a certain system of Chebyshev~--~Markov algebraic fractions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2020), pp. 68-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate approximative properties of partial sums of conjugate Fourier series with respect to one system of Chebyshev – Markov algebraic fractions. The main results of previously known works on approximations of conjugate functions in polynomial and rational cases are presented. One system of algebraic fractions Chebyshev – Markov is introduced and the construction of the conjugate rational Fourier – Chebyshev series corresponding to it is carried out. An integral representation of the conjugate function approximations by partial sums of the constructed conjugate series is found. The approximation of functions conjugate to $|x|^s, 1 s 2,$ on the interval $[-1,1]$ by partial sums of conjugate rational Fourier – Chebyshev series is studied. The integral representation of approximations, estimates of approximations by the studied method depending on the position of the point $x$ on the interval, and their asymptotic expressions for $n \to \infty$ are found. The optimal value of the parameter at which the deviation of partial sums of the conjugate rational Fourier – Chebyshev series from the conjugate function $|x|^s, 1 s 2,$ on the interval $[-1,1]$ have the highest rate of tendency to zero is established. As a consequence of the results obtained, the problem of approximations of a function conjugate to $|x|^s, s > 1,$ by partial sums of the conjugate Fourier series on the Chebyshev polynomial system of the first kind is studied in detail.
Keywords: Chebyshev – Markov algebraic fraction, conjugate function, partial sum of the Fourier – Chebyshev series, exact estimate, asymptotic method.
@article{IVM_2020_9_a5,
     author = {Y. A. Rovba and P. G. Patseika},
     title = {Approximations of conjugate functions by partial sums of conjugate {Fourier} series with respect to a certain system of {Chebyshev~--~Markov} algebraic fractions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {68--84},
     publisher = {mathdoc},
     number = {9},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_9_a5/}
}
TY  - JOUR
AU  - Y. A. Rovba
AU  - P. G. Patseika
TI  - Approximations of conjugate functions by partial sums of conjugate Fourier series with respect to a certain system of Chebyshev~--~Markov algebraic fractions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 68
EP  - 84
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_9_a5/
LA  - ru
ID  - IVM_2020_9_a5
ER  - 
%0 Journal Article
%A Y. A. Rovba
%A P. G. Patseika
%T Approximations of conjugate functions by partial sums of conjugate Fourier series with respect to a certain system of Chebyshev~--~Markov algebraic fractions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 68-84
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_9_a5/
%G ru
%F IVM_2020_9_a5
Y. A. Rovba; P. G. Patseika. Approximations of conjugate functions by partial sums of conjugate Fourier series with respect to a certain system of Chebyshev~--~Markov algebraic fractions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2020), pp. 68-84. http://geodesic.mathdoc.fr/item/IVM_2020_9_a5/

[1] Motornyi V. P., “Ob asimptoticheski tochnykh otsenkakh potochechnogo priblizheniya algebraicheskimi mnogochlenami nekotorykh klassov funktsii”, Dokl. RAN, 370:3 (2000), 313–315 | MR | Zbl

[2] Motornyi V. P., “Ob asimptoticheski tochnykh otsenkakh priblizheniya algebraicheskimi mnogochlenami nekotorykh klassov funktsii”, Ukr. matem. zhurn., 52:1 (2000), 85–99 | MR

[3] Motornyi V. P., “Priblizhenie odnogo klassa singulyarnykh integralov algebraicheskimi mnogochlenami s uchetom polozheniya tochki na otrezke”, Tr. MIAN, 232, 2001, 268–285 | Zbl

[4] Korneichuk N. P., Polovina A. I., “O priblizhenii funktsii, udovletvoryayuschikh usloviyu Lipshitsa, algebraicheskimi mnogochlenami”, Matem. zametki, 9:4 (1971), 441–447

[5] Privalov I. I., “Sur les fonctions conjuguees”, Bull. de la Soc. Math, de France, 44 (1916), 100–103 | MR

[6] Privalov I. I., “K teorii sopryazhennykh trigonometricheskikh ryadov”, Matem. sb., 31:2 (1923), 224–228

[7] Kolmogorov A. N., “Sur les fonctions harmoniques conjuguées et les séries de Fourier”, Fund. Math., 7 (1925), 24–29 | DOI

[8] Riesz M., “Les fonctions conjuguées et les séries de Fourier”, C. R. Acad. Sci. Paris, 178 (1924), 1464–1467 | Zbl

[9] Riesz M., “Sur les fonctions conjuguées”, Math. Z., 27 (1927), 218–244 | DOI | MR | Zbl

[10] Bari N. K., “O nailuchshem priblizhenii trigonometricheskimi polinomami dvukh sopryazhennykh funktsii”, Izv. AN SSSR. Ser. matem., 19:5 (1955), 285–302 | Zbl

[11] Stechkin S. B., “O nailuchshem priblizhenii sopryazhennykh funktsii trigonometricheskimi polinomami”, Izv. AN SSSR. Ser. matem., 20:2 (1956), 197–206 | Zbl

[12] Mardvilko T. S., Pekarskii A. A., “Conjugate Functions on the Closed Interval and Their Relationship with Uniform Rational and Piecewise Polynomial Approximations”, Math. Notes, 99:2 (2016), 272–283 | DOI | MR | Zbl

[13] Qureshi K., “On the degree of approximation of function belonging to the Lipschitz class by means of a conjugate series”, Indian J. Pure Appl. Math., 12:9 (1981), 1120–1123 | MR | Zbl

[14] Singh U., “Approximation of conjugate of functions belonging to weighted Lipschitz class $W(L^p,\xi(t))$ by Hausdorff means of conjugate Fourier series”, J. Comput. Appl. Math., 259 (2014), 633–640 | DOI | MR | Zbl

[15] Rhoades B. E., “The degree of approximation of functions, and their conjugates, belonging to several general Lipschitz classes by Hausdorff matrix means of Fourier series and conjugate series OF A Fourier series”, Tamkang of math., 45:4 (2014), 389–395 | DOI | MR | Zbl

[16] Nigam H. K., Sharma A., “On approximation of conjugate of functions belonging to different classes by product means”, International J. Pure and Appl. Math., 76:2 (2012), 303–316 | MR | Zbl

[17] Falaleev L. P., “Priblizhenie sopryazhennykh funktsii summami Chezaro”, Matem. zametki, 28:3 (1980), 451–458 | MR | Zbl

[18] Rusak V. N., Rybachenko I. V., “Ravnomernaya ratsionalnaya approksimatsiya sopryazhennykh funktsii”, Vestn. BGU. Ser. 1. Matem. i informatika, 3 (2013), 83–86 | Zbl

[19] Pekarskii A. A., “Sopryazhennye funktsii i ikh svyaz s ravnomernymi ratsionalnymi i kusochno-polinomialnymi priblizheniyami”, Matem. sb., 206:2 (2015), 175–182 | Zbl

[20] Lukashov A. L., “Algebraicheskie drobi Chebysheva – Markova na neskolkikh otrezkakh”, Anal. Math., 24:1 (1998), 111–130 | DOI | MR | Zbl

[21] Rovba E. A., Potseiko P. G., “Ob odnoi sisteme ratsionalnykh drobei Chebysheva – Markova”, Dokl. NAN Belarusi, 61:1 (2017), 24–29 | MR | Zbl

[22] Rouba Y., Patseika P., Smatrytski K., “On one system of rational Chebyshev – Markov fractions”, Anal. Math., 44:1 (2018), 115–140 | DOI | MR | Zbl

[23] Vinogradov I. M., Matematicheskaya entsiklopediya, v 5 tomakh, Izd-vo Sovetskaya entsiklopediya, 1977

[24] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979 | MR

[25] Fedoryuk M. V., Asimptotika. Integraly i ryady, Gl. red. Fiz.-matem. lit-ry, M., 1987 | MR

[26] Sidorov Yu. V., Fedoryuk M. V., Shabunin M. I., Lektsii po teorii funktsii kompleksnogo peremennogo, gl. red. Fiz-matem. lit., M., 1989

[27] Rovba E. A., Mikulich E. G., “Konstanty v priblizhenii funktsii $|x|$ interpolyatsionnymi ratsionalnymi protsessami”, Dokl. NAN. Belarusi, 53:6 (2009), 11–15 | MR | Zbl