Estimation of the region of global stability of the equilibrium state of the logistic equation with delay
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2020), pp. 39-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the question of determining all those parameters for which all positive solutions of the logistic equation with delay tend to zero as $ t \to \infty $. The well-known Wright conjecture [1] on the estimation of the set of such parameters is proved. A methodology has been developed that makes it possible to consistently refine this estimate.
Keywords: logistic equation, global stable, delay, one-dimensional mapping, asymptotics of solutions.
@article{IVM_2020_9_a3,
     author = {S. A. Kaschenko and D. O. Loginov},
     title = {Estimation of the region of global stability of the equilibrium state of the logistic equation with delay},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {39--55},
     publisher = {mathdoc},
     number = {9},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_9_a3/}
}
TY  - JOUR
AU  - S. A. Kaschenko
AU  - D. O. Loginov
TI  - Estimation of the region of global stability of the equilibrium state of the logistic equation with delay
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 39
EP  - 55
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_9_a3/
LA  - ru
ID  - IVM_2020_9_a3
ER  - 
%0 Journal Article
%A S. A. Kaschenko
%A D. O. Loginov
%T Estimation of the region of global stability of the equilibrium state of the logistic equation with delay
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 39-55
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_9_a3/
%G ru
%F IVM_2020_9_a3
S. A. Kaschenko; D. O. Loginov. Estimation of the region of global stability of the equilibrium state of the logistic equation with delay. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2020), pp. 39-55. http://geodesic.mathdoc.fr/item/IVM_2020_9_a3/

[1] Wright E. M., “A non-linear difference-differential equation”, J. für die reine und angewandte Math. (Crelles Journal), 194 (1955), 66–87 | MR | Zbl

[2] Kuang Y., Delay differential equations with applications in population dynamics, Math. in Sci. and Engineering, 191, Academic Press, New York, 1993 | MR | Zbl

[3] Gourley S. A., So J., Wu J., “Non-locality of reaction-diffusion equations induced by delay: Biological modeling and nonlinear dynamics”, J. Math. Sci., 124 (2004), 5119–5153 | DOI | MR

[4] Grigorieva E. V., Kashchenko S. A., “Regular and chaotic pulsations in laser diode with delayed feedback”, Int.J.Bifur. Chaos., 3:3 (1993), 1515–1528 | DOI | Zbl

[5] Kakutani S., Markus L., “On the nonlinear difference differential equation $y^\prime(t) = [A + By(t - \gamma)] y(t)$”, Contributions Theory Nonlinear Oscillations (Princeton), 4 (1958), 411–418 | MR

[6] Kolmanovskii V. B., Nosov V. R., Stability of Functional Differential Equations, Academic Press, 1986 | MR | Zbl

[7] Kolmanovskii V. B., “Uravneniya s posledeistviem i matematicheskoe modelirovanie”, Sorosovskii obrazovatelnyi zhurn., 1996, no. 4, 122–127

[8] Kaschenko S. A., “K voprosu ob otsenke v prostranstve parametrov oblasti globalnoi ustoichivosti uravneniya Khatchinsona”, Nelineinye kolebaniya v zadachakh ekologii, YarGU, Yaroslavl, 1985, 55–62

[9] Jan Bouwe van den Berg, Jonathan Jaquette, A proof of Wright's conjecture, 2017, arXiv: 1704.00029v1 | MR

[10] Balazs Banhelyi, Tibor Csendes, Tibor Krisztin, Arnold Neumaier, “Global Attractivity of the Zero Solution for Wright's Equation”, Siam J. Appl. Dynamical Systems, 13:1 (2014), 537–563 | DOI | MR | Zbl