Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_9_a3, author = {S. A. Kaschenko and D. O. Loginov}, title = {Estimation of the region of global stability of the equilibrium state of the logistic equation with delay}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {39--55}, publisher = {mathdoc}, number = {9}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_9_a3/} }
TY - JOUR AU - S. A. Kaschenko AU - D. O. Loginov TI - Estimation of the region of global stability of the equilibrium state of the logistic equation with delay JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 39 EP - 55 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_9_a3/ LA - ru ID - IVM_2020_9_a3 ER -
%0 Journal Article %A S. A. Kaschenko %A D. O. Loginov %T Estimation of the region of global stability of the equilibrium state of the logistic equation with delay %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2020 %P 39-55 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2020_9_a3/ %G ru %F IVM_2020_9_a3
S. A. Kaschenko; D. O. Loginov. Estimation of the region of global stability of the equilibrium state of the logistic equation with delay. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2020), pp. 39-55. http://geodesic.mathdoc.fr/item/IVM_2020_9_a3/
[1] Wright E. M., “A non-linear difference-differential equation”, J. für die reine und angewandte Math. (Crelles Journal), 194 (1955), 66–87 | MR | Zbl
[2] Kuang Y., Delay differential equations with applications in population dynamics, Math. in Sci. and Engineering, 191, Academic Press, New York, 1993 | MR | Zbl
[3] Gourley S. A., So J., Wu J., “Non-locality of reaction-diffusion equations induced by delay: Biological modeling and nonlinear dynamics”, J. Math. Sci., 124 (2004), 5119–5153 | DOI | MR
[4] Grigorieva E. V., Kashchenko S. A., “Regular and chaotic pulsations in laser diode with delayed feedback”, Int.J.Bifur. Chaos., 3:3 (1993), 1515–1528 | DOI | Zbl
[5] Kakutani S., Markus L., “On the nonlinear difference differential equation $y^\prime(t) = [A + By(t - \gamma)] y(t)$”, Contributions Theory Nonlinear Oscillations (Princeton), 4 (1958), 411–418 | MR
[6] Kolmanovskii V. B., Nosov V. R., Stability of Functional Differential Equations, Academic Press, 1986 | MR | Zbl
[7] Kolmanovskii V. B., “Uravneniya s posledeistviem i matematicheskoe modelirovanie”, Sorosovskii obrazovatelnyi zhurn., 1996, no. 4, 122–127
[8] Kaschenko S. A., “K voprosu ob otsenke v prostranstve parametrov oblasti globalnoi ustoichivosti uravneniya Khatchinsona”, Nelineinye kolebaniya v zadachakh ekologii, YarGU, Yaroslavl, 1985, 55–62
[9] Jan Bouwe van den Berg, Jonathan Jaquette, A proof of Wright's conjecture, 2017, arXiv: 1704.00029v1 | MR
[10] Balazs Banhelyi, Tibor Csendes, Tibor Krisztin, Arnold Neumaier, “Global Attractivity of the Zero Solution for Wright's Equation”, Siam J. Appl. Dynamical Systems, 13:1 (2014), 537–563 | DOI | MR | Zbl