A small intervals theorem for subharmonic functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2020), pp. 15-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb{C}$ be the complex plane, $E$ be a measurable subset in a segment $[0, R]$ of the positive semiaxis $\mathbb{R}^+$, $u\not\equiv - \infty$ be a subharmonic function on $\mathbb{C}$. The main result of this article is an upper estimate of the integral of the module $|u|$ over a subset of $E$ through the maximum of the function $u$ on a circle of radius $R$ centered at zero and a linear Lebesgue measure of subset $E$. Our result develops one of the classical theorems of R. Nevanlinna in the case of $E=[0, R]$ and versions of so-called Small Arcs Lemma by Edrei – Fuchs for small intervals on $\mathbb{R}^+$ from the works of A. F. Grishin, M. L. Sodin, T. I. Malyutina. Our obtained estimate is uniform in the sense that the constants in the estimates are absolute and do not depend on the subharmonic function under the semi-normalization $u(0)\geq 0$.
Keywords: subharmonic function, Nevanlinna theory, Small Arcs Lemma by Edrey – Fuchs, lower estimate of subharmonic function, entire function.
@article{IVM_2020_9_a1,
     author = {L. A. Gabdrakhmanova and B. N. Khabibullin},
     title = {A small intervals theorem for subharmonic functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {15--24},
     publisher = {mathdoc},
     number = {9},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_9_a1/}
}
TY  - JOUR
AU  - L. A. Gabdrakhmanova
AU  - B. N. Khabibullin
TI  - A small intervals theorem for subharmonic functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 15
EP  - 24
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_9_a1/
LA  - ru
ID  - IVM_2020_9_a1
ER  - 
%0 Journal Article
%A L. A. Gabdrakhmanova
%A B. N. Khabibullin
%T A small intervals theorem for subharmonic functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 15-24
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_9_a1/
%G ru
%F IVM_2020_9_a1
L. A. Gabdrakhmanova; B. N. Khabibullin. A small intervals theorem for subharmonic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2020), pp. 15-24. http://geodesic.mathdoc.fr/item/IVM_2020_9_a1/

[1] Nevanlinna R., Le théoremè de Picard – Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929 | MR

[2] Goldberg A. A., Ostrovskii I. V., Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970 | MR

[3] Edrei A., Fuchs W. H. J., “Bounds for number of deficient values of certain classes of meromorphic functions”, Proc. London Math. Soc., 12 (1962), 315–344 | DOI | MR | Zbl

[4] Grishin A. F., Sodin M. L., “Rost po luchu, raspredelenie kornei po argumentam tseloi funktsii konechnogo poryadka i odna teorema edinstvennosti”, Resp. sb., Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 50, Vischa shkola, Kharkov, 1988, 47–61

[5] Grishin A. F., Malyutina T. I., “Novye formuly dlya indikatorov subgarmonicheskikh funktsii”, Matem. fiz., anal., geom., 12:1 (2005), 25–72 | MR | Zbl

[6] Valiron G., Lectures on the General Theory of Integral Functions, Chelsea, 1949

[7] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[8] Ransford Th., Potential Theory in the Complex Plane, Cambridge Univer. Press, Cambridge, 1995 | MR | Zbl

[9] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980 | MR

[10] Khabibullin B. N., Otsenki snizu i svoistva odnorodnosti subgarmonicheskikh funktsii, 1604-84 Dep. VINITI, Ufa, 1984 https://www.researchgate.net/publication/265318048

[11] Khabibullin B. N., “Otsenki snizu i svoistva odnorodnosti subgarmonicheskikh funktsii”, Issledovaniya po teorii approksimatsii funktsii, Bashkirsk. filial AN SSSR, Ufa, 1984, 148–159 https://www.researchgate.net/publication/299749932