Boundary value problem for system of pseudo-hyperbolic equations of the fourth order with nonlocal condition
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2020), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a boundary value problem for system of pseudo-hyperbolic equations of the fourth order with nonlocal condition on rectangular domain. By introducing new unknown function considered problem is reduced to equivalent nonlocal problem with integral condition for system of hyperbolic integro-differential equations of the second order. Algorithm for finding of approximate solution to equivalent problem is proposed and its convergence is proved on the basis method of functional parametrization. Sufficient conditions of the existence unique classical solution to boundary value problem for system of pseudo-hyperbolic equations of the fourth order with nonlocal condition are established in the terms of initial data.
Keywords: system of pseudo-hyperbolic equations, nonlocal problem, system of hyperbolic integro-differential equations, integral condition, solvability.
@article{IVM_2020_9_a0,
     author = {A. T. Assanova and Zh. S. Tokmurzin},
     title = {Boundary value problem for system of pseudo-hyperbolic equations of the fourth order with nonlocal condition},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--14},
     publisher = {mathdoc},
     number = {9},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_9_a0/}
}
TY  - JOUR
AU  - A. T. Assanova
AU  - Zh. S. Tokmurzin
TI  - Boundary value problem for system of pseudo-hyperbolic equations of the fourth order with nonlocal condition
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 3
EP  - 14
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_9_a0/
LA  - ru
ID  - IVM_2020_9_a0
ER  - 
%0 Journal Article
%A A. T. Assanova
%A Zh. S. Tokmurzin
%T Boundary value problem for system of pseudo-hyperbolic equations of the fourth order with nonlocal condition
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 3-14
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_9_a0/
%G ru
%F IVM_2020_9_a0
A. T. Assanova; Zh. S. Tokmurzin. Boundary value problem for system of pseudo-hyperbolic equations of the fourth order with nonlocal condition. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2020), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2020_9_a0/

[1] Bishop R. E. D., “Longitudinal waves in beams”, Aeronaut. Q., 3:2 (1952), 280–293 | DOI | MR

[2] Ptashnik B. I., Nekorrektnye granichnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi, Nauk. dumka, Kiev, 1984

[3] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vyssh. shk., M., 1995

[4] Demidenko G.V., Uspenskii S.V., Partial differential equations and systems not solvable with respect to the highest-order derivative, Pure and Appl. Math., 256, Marcel Dekker, New York, 1998 | MR

[5] Algazin S. D., Kiiko I. A., Flatter plastin i obolochek, Nauka, M., 2006

[6] Nakhushev A. M., Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006

[7] Yuldashev T. K., “Obratnaya zadacha dlya nelineinogo integro-differentsialnogo uravneniya tipa Benney-Luke s vyrozhdennym yadrom”, Izv. vuzov. Matem., 2016, no. 9, 59–67 | Zbl

[8] Liu Y., Li H., “H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations”, Applied Mathematics and Computation, 212:2 (2009), 446–457 | DOI | MR | Zbl

[9] Guo H., “Analysis of split weighted least-squares procedures for pseudo-hyperbolic equations”, Applied Mathematics and Computation, 217:8 (2010), 4109–4121 | DOI | MR | Zbl

[10] Pulkina L. S., “Solution to nonlocal problems of pseudohyperbolic equations”, Electronic J. of Diff. Equat., 2012:116 (2012), 1–9 | MR

[11] Demidenko G. V., “Usloviya razreshimosti zadachi Koshi dlya psevdogiperbolicheskikh uravnenii”, Sib. matem. zhurn., 56:6 (2015), 1289–1303 | MR | Zbl

[12] Kirane M., Ragoub L., “Nonexistence results for a pseudo-hyperbolic equation in the Heisenberg group”, Electronic J. of Diff. Equat., 2015:110 (2015), 1–9 | MR

[13] Pulkina L. S., “Zadacha s dinamicheskim nelokalnym usloviem dlya psevdogiperbolicheskogo uravneniya”, Izv. vuzov. Matem., 2016, no. 9, 42–50 | Zbl

[14] Fedotov I., Shatalov M., Marais J., “Hyperbolic and pseudo-hyperbolic equations in the theory of vibration”, Acta Mech., 227:12 (2016), 3315–3324 | DOI | MR | Zbl

[15] Chen H., Hou T., “A priori and a posteriori error estimates of H1-Galerkin mixed finite element methods for optimal control problems governed by pseudo-hyperbolic integro-differential equations”, Appl. Math. and Computat., 328:1 (2018), 100–112 | MR | Zbl

[16] Pulkina L. S., Beylin A. B., “Nonlocal approach to problems on longitudinal vibration in a short bar”, Electronic J. of Diff. Equat., 2019:29 (2019), 1–9 | MR

[17] Zhao Z., Li H., “A continuous Galerkin method for pseudo-hyperbolic equations with variable coefficients”, J. Math. Anal. and Appl., 473:2 (2019), 1053–1072 | DOI | MR | Zbl

[18] Asanova A. T., Dzhumabaev D. S., “Well-posedness of nonlocal boundary value problems with integral condition for the system of hyperbolic equations”, J. Math. Anal. and Appl., 402:1 (2013), 167–178 | DOI | MR | Zbl

[19] Myuntts G., Integralnye uravneniya, v. 1, Lineinye integralnye uravneniya Volterra, GTTI, L., 1934

[20] Asanova A. T., “O reshenii nachalno-kraevoi zadachi dlya sistemy differentsialnykh uravnenii v chastnykh proizvodnykh tretego poryadka”, Izv. vuzov. Matem., 2019, no. 4, 15–26