On an initial-boundary value problem which arises in the dynamics of a viscous stratified fluid
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2020), pp. 59-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

An initial-boundary value problem is considered which describes the linear vibrations of a viscous stratified fluid with elastic membrane in a bounded vessel. We find sufficient existence conditions for a strong (with respect to the time variable) solution of the initial-boundary value problem describing the evolution of the specified hydrodynamics system.
Keywords: stratification effect in viscous fluids, differential equation in Hilbert space, Cauchy problem, strong solution.
@article{IVM_2020_8_a6,
     author = {D. O. Tsvetkov},
     title = {On an initial-boundary value problem which arises in the dynamics of a viscous stratified fluid},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {59--73},
     publisher = {mathdoc},
     number = {8},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_8_a6/}
}
TY  - JOUR
AU  - D. O. Tsvetkov
TI  - On an initial-boundary value problem which arises in the dynamics of a viscous stratified fluid
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 59
EP  - 73
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_8_a6/
LA  - ru
ID  - IVM_2020_8_a6
ER  - 
%0 Journal Article
%A D. O. Tsvetkov
%T On an initial-boundary value problem which arises in the dynamics of a viscous stratified fluid
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 59-73
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_8_a6/
%G ru
%F IVM_2020_8_a6
D. O. Tsvetkov. On an initial-boundary value problem which arises in the dynamics of a viscous stratified fluid. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2020), pp. 59-73. http://geodesic.mathdoc.fr/item/IVM_2020_8_a6/

[1] Ilgamov M. A., Kolebaniya uprugikh obolochek, soderzhaschikh zhidkost i gaz, Nauka, M., 1969

[2] Volmir A. S., Obolochki v potoke zhidkosti i gaza. Zadachi gidrouprugosti, Nauka, M., 1979

[3] Pertsev A. K., Platonov E. G., Dinamika obolochek i plastin, Sudostroenie, L., 1987

[4] Capodanno P., “Vibrations d'un Liquide dans un Container Cylindrique Summetrique a Fond Elastique en Apesanteur”, Mecanique Appl., 38:1 (1993), 59–72 | MR | Zbl

[5] Capodanno P., “Vibrations d'un Fluide Compressible une Cavite Fermee par Une Membran Supportee par un Ecru”, Mech. Resch Communicat., 22:1 (1995), 1–7 | MR | Zbl

[6] Kopachevskii N. D., Orlova L. D., Pashkova Yu. S., “Differentsialno-operatornye i integro-differentsialnye uravneniya v probleme malykh kolebanii gidrodinamicheskikh sistem”, Uchen. zap. Simf. un-ta, 41:2 (1995), 98–108

[7] Pashkova Yu. S., Kolebaniya zhidkosti v sosude, zakrytom uprugoi membranoi, i obschie voprosy evolyutsii gidrodinamicheskikh sistem, Avtoref. dis., Donetsk, 1996

[8] Kononov Yu. N., Shevchenko V. P., “Svobodnye kolebanii mnogosloinoi stratifitsirovannoi zhidkosti, razdelennoi uprugimi membranami”, Teor. prikl. mekhan., 29 (1999), 151–163 | Zbl

[9] Kopachevsky N. D., Krein S. G., Operator Approach to Linear Problems of Hydrodynamics, v. 1, Self-adjoint Problems for an Ideal Fluid, Birkhauser Verlag, Basel–Boston–Berlin, 2001 | MR | Zbl

[10] Mikhlin S. G., Kurs matematicheskoi fiziki, Nauka, M., 1968 | MR

[11] Azizov T. Ya., Kopachevskii N. D., Abstraktnaya formula Grina i ee prilozheniya, Simferopol, 2011

[12] Metivier G., “Valeurs propres d'operateurs definis par le restriction de systemes variationalles a des sousespaces”, J. Math. Pures Appl., 57:2 (1978), 133–156 | MR | Zbl

[13] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970

[14] Solonnikov V. A., “O differentsialnykh svoistvakh resheniya pervoi kraevoi zadachi dlya nestatsionarnoi sistemy uravnenii Nave-Stoksa”, Tr. MIAN SSSR, 73, 1964, 221–291 | Zbl

[15] Solonnikov V. A., “Ob obschikh kraevykh zadachakh dlya sistem, ellipticheskikh v smysle A. Daglisa-L. Nirenberga”, Izv. AN SSSR. Ser. matem., 28:3 (1964), 665–706

[16] Krein S. G., Lineinye differentsialnye uravneniya v banakhovykh prostranstvakh, Nauka, M., 1967