A criterion for the $\sigma$-subnormality of a subgroup in a finite $3'$-group
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2020), pp. 36-43
Voir la notice de l'article provenant de la source Math-Net.Ru
For a partition $\sigma$ of the set $\mathbb{P}$ of all primes, it is solved, that if a subgroup $H$ of a finite $3'$-group $G$ is $\sigma$-subnormal in $$ for any $x \in G$, then $H$ is $\sigma$-subnormal in $G$.
Keywords:
finite group, $\sigma$-subnormal subgroup, subnormal subgroup, Suzuki group.
@article{IVM_2020_8_a3,
author = {S. F. Kamornikov and V. N. Tyutyanov},
title = {A criterion for the $\sigma$-subnormality of a subgroup in a finite $3'$-group},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {36--43},
publisher = {mathdoc},
number = {8},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2020_8_a3/}
}
TY - JOUR AU - S. F. Kamornikov AU - V. N. Tyutyanov TI - A criterion for the $\sigma$-subnormality of a subgroup in a finite $3'$-group JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 36 EP - 43 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_8_a3/ LA - ru ID - IVM_2020_8_a3 ER -
S. F. Kamornikov; V. N. Tyutyanov. A criterion for the $\sigma$-subnormality of a subgroup in a finite $3'$-group. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2020), pp. 36-43. http://geodesic.mathdoc.fr/item/IVM_2020_8_a3/