Positive invertibility of matrices and exponential stability of impulsive systems of Ito linear differential equations with bounded delays
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2020), pp. 18-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the theory of inverse-positive matrices, some problems of exponential $2p$–stability $(1 \le p \infty )$ of systems of linear differential Ito equations with bounded delays and impulse effects on the part of the solution components are investigated. The ideas and methods developed by N.V. Azbelev and his students to study deterministic stability of functional dfferential equations are applied. For the above mentioned systems of equations, suffcient conditions for exponential $2p$-stability ($(1 \le p \infty )$ are given in terms of positive invertibility of matrices constructed via the parameters of these systems. Feasibility of these conditions is checked for speciffic systems of equations.
Mots-clés : Ito equations
Keywords: stability of solutions, impulse effects, positive invertibility of matrices, bounded delays.
@article{IVM_2020_8_a2,
     author = {R. I. Kadiev and A. V. Ponosov},
     title = {Positive invertibility of matrices and exponential stability of impulsive systems of {Ito} linear differential equations with bounded delays},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {18--35},
     publisher = {mathdoc},
     number = {8},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_8_a2/}
}
TY  - JOUR
AU  - R. I. Kadiev
AU  - A. V. Ponosov
TI  - Positive invertibility of matrices and exponential stability of impulsive systems of Ito linear differential equations with bounded delays
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 18
EP  - 35
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_8_a2/
LA  - ru
ID  - IVM_2020_8_a2
ER  - 
%0 Journal Article
%A R. I. Kadiev
%A A. V. Ponosov
%T Positive invertibility of matrices and exponential stability of impulsive systems of Ito linear differential equations with bounded delays
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 18-35
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_8_a2/
%G ru
%F IVM_2020_8_a2
R. I. Kadiev; A. V. Ponosov. Positive invertibility of matrices and exponential stability of impulsive systems of Ito linear differential equations with bounded delays. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2020), pp. 18-35. http://geodesic.mathdoc.fr/item/IVM_2020_8_a2/

[1] Kolmanovskii V. B., Nosov V. R., Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981

[2] Tsarkov E. F., Sluchainye vozmuscheniya differentsialno-funktsionalnykh uravnenii, Zinatne, Riga, 1989

[3] Mao X. R., Stochastic Differential Equations and Applications, Horwood Publ. Ltd, 1997 | MR | Zbl

[4] Mohammed RS.-E.A., “Stochastic Differential Systems with Memory. Theory, Examples and Applications”, Proc. of The Sixth Workshop on Stochastic Analysis (Geilo, Norway), 1996, 1–91 | MR | Zbl

[5] Azbelev N. V., Maksimov V. P., Rakhmatulina L. F., Introduction to the Theory of Functional Differential Equations, Methods and Appl., Hindawi, New York, 2007 | MR

[6] Azbelev N. V., Simonov P. M., Stability of Differential equations with Aftereffect, Taylor and Francis, London, 2002 | MR

[7] Kadiev R. I., “Dostatochnye usloviya ustoichivosti stokhasticheskikh sistem s posledeistviem”, Differents. uravneniya, 30:4 (1994), 555–564 | MR | Zbl

[8] Kadiev R. I., “Suschestvovanie i edinstvennost resheniya zadachi Koshi dlya funktsionalno-differentsialnykh uravnenii po semimartingalu”, Izv. vuzov. Matem., 1995, no. 10, 35–40 | MR

[9] Kadiev R. I., Dis. ... d-r fiz.-matem. nauk, Makhachkala, 2000

[10] Kadiev R. I., “Ustoichivost reshenii nelineinykh funktsionalno-differentsialnykh uravnenii s impulsnymi vozdeistviyami po lineinomu priblizheniyu”, Differents. uravneniya, 49:8 (2013), 963–970 | MR | Zbl

[11] Kadiev R. I., Ponosov A. V., “Ustoichivost lineinykh funktsionalno-differentsialnykh uravnenii pri postoyanno deistvuyuschikh vozmuscheniyakh”, Differents. uravneniya, 28:2 (1992), 198–207 | MR

[12] Kadiev R. I., Ponosov A. V., “Ustoichivost reshenii lineinykh impulsnykh sistem differentsialnykh uravnenii Ito s posledeistviem”, Differents. uravneniya, 43:7 (2007), 879–885 | MR | Zbl

[13] Kadiev R. I., Ponosov A. V., “Ustoichivost reshenii lineinykh impulsnykh sistem differentsialnykh uravnenii Ito s ogranichennymi zapazdyvaniyami”, Differents. uravneniya, Minsk, BGU, 46:4 (2010), 486–498 | MR | Zbl

[14] Kadiev R. I., Ponosov A. V., “Polozhitelnaya obratimost matrits i ustoichivost differentsialnykh uravnenii Ito s zapazdyvaniyami”, Differents. uravneniya, Minsk, BGU, 53:5 (2017), 579–590 | Zbl

[15] Anokhin A., Berezansky L., Braverman E., “Exponential stability of linear delay impulsive differential equations”, J. Math. Anal. and Appl., 193 (1995), 923–941 | DOI | MR | Zbl

[16] Bainov D., Stamova I., Vatsala A., “Global stability of sets for linear impulsive differential-difference equations”, Appl. Anal., 62 (1996), 149–160 | DOI | MR | Zbl

[17] Berezansky L., Braverman E., “Boundedness and stability of impulsively perturbed delay differential equations”, Functional Different. Equat., 3:1–2 (1995), 19–30 | MR | Zbl

[18] Berezanski L., Idels L., “On Integrable solutions of impulsive delay differential equations”, Comm. Appl. Math. Anal., 2 (1998), 301–309 | MR

[19] Xu L., He D., Ma Q., “Impulsive stabilization of stochastic differential equations with time delays”, Math. and Computer Modelling, 57 (2013), 997–1104 | MR

[20] Kadiev R., Ponosov A., “Stability of impulsive stochastic differential linear functional equations with linear delays”, J. Abstract Diff. Equat. and Appl., 2:2 (2012), 7–25 | MR | Zbl

[21] Liptser R. Sh., Shiryaev A. N., Teoriya martingalov, Nauka, M., 1986 | MR

[22] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1969 | MR