On the maximum principle for solutions of second order elliptic equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2020), pp. 11-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the sufficient conditions, under which the maximum princirle for the solution of second order partial differential elliptic equation in the unit circle meets maximum princirle are researched. It is proved that if a quasiconformality coefficient of such function satisfies certain boundary conditions then this function meets maximum principle. Proving the main result we use integral representations of solutions of this equation and properties of Cauchy type integral and functions of Hardy and Smirnoff classes.
Mots-clés : elliptic equation, quasiconformality coefficient.
Keywords: maximum principle
@article{IVM_2020_8_a1,
     author = {A. B. Zaitsev},
     title = {On the maximum principle for solutions of second order elliptic equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {11--17},
     publisher = {mathdoc},
     number = {8},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_8_a1/}
}
TY  - JOUR
AU  - A. B. Zaitsev
TI  - On the maximum principle for solutions of second order elliptic equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 11
EP  - 17
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_8_a1/
LA  - ru
ID  - IVM_2020_8_a1
ER  - 
%0 Journal Article
%A A. B. Zaitsev
%T On the maximum principle for solutions of second order elliptic equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 11-17
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_8_a1/
%G ru
%F IVM_2020_8_a1
A. B. Zaitsev. On the maximum principle for solutions of second order elliptic equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2020), pp. 11-17. http://geodesic.mathdoc.fr/item/IVM_2020_8_a1/

[1] Verchota G. C., Vogel A. L., “Nonsymmetric sistems on nonsmooth planar domains”, Trans. Amer. Math. Soc., 349:11 (1997), 4501–4535 | DOI | MR | Zbl

[2] Zaitsev A. B., “O vzaimnoi odnoznachnosti reshenii ellipticheskikh uravnenii vtorogo poryadka v edinichnom kruge na ploskosti”, Zap. nauchn. sem. POMI, 434, 2015, 91–100

[3] Bagapsh A. O., “Integral Puassona i funktsiya Grina dlya odnoi ellipticheskoi sistemy uravnenii v kruge i ellipse”, Zhurn. vychisl. matem. i matem. fiziki, 56:12 (2016), 2065–2072 | MR | Zbl

[4] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[5] Danilyuk I. I., Neregulyarnye granichnye zadachi na ploskosti, Nauka, M., 1975

[6] Zaitsev A. B., “Ob otobrazheniyakh resheniyami ellipticheskikh uravnenii vtorogo poryadka”, Matem. zametki, 95:5 (2014), 718–733 | Zbl