Some new congruences modulo $5$ for the general partition function
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 83-88
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present work, we discover some new congruences modulo $5$ for $p_r(n)$, the general partition function by restricting $r$ to some sequence of negative integers. Our emphasis throughout this paper is to exhibit the use of $q$-identities to generate the congruences for $p_r(n)$.
Keywords:
$q$-identity, Ramanujan's general partition function.
Mots-clés : Partition congruence
Mots-clés : Partition congruence
@article{IVM_2020_7_a8,
author = {B. R. Srivatsa Kumar and Shruthi and D. Ranganatha},
title = {Some new congruences modulo $5$ for the general partition function},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {83--88},
publisher = {mathdoc},
number = {7},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2020_7_a8/}
}
TY - JOUR AU - B. R. Srivatsa Kumar AU - Shruthi AU - D. Ranganatha TI - Some new congruences modulo $5$ for the general partition function JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 83 EP - 88 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_7_a8/ LA - ru ID - IVM_2020_7_a8 ER -
B. R. Srivatsa Kumar; Shruthi; D. Ranganatha. Some new congruences modulo $5$ for the general partition function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 83-88. http://geodesic.mathdoc.fr/item/IVM_2020_7_a8/