Some new congruences modulo $5$ for the general partition function
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 83-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work, we discover some new congruences modulo $5$ for $p_r(n)$, the general partition function by restricting $r$ to some sequence of negative integers. Our emphasis throughout this paper is to exhibit the use of $q$-identities to generate the congruences for $p_r(n)$.
Keywords: $q$-identity, Ramanujan's general partition function.
Mots-clés : Partition congruence
@article{IVM_2020_7_a8,
     author = {B. R. Srivatsa Kumar and Shruthi and D. Ranganatha},
     title = {Some new congruences modulo $5$ for the general partition function},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {83--88},
     publisher = {mathdoc},
     number = {7},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_7_a8/}
}
TY  - JOUR
AU  - B. R. Srivatsa Kumar
AU  - Shruthi
AU  - D. Ranganatha
TI  - Some new congruences modulo $5$ for the general partition function
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 83
EP  - 88
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_7_a8/
LA  - ru
ID  - IVM_2020_7_a8
ER  - 
%0 Journal Article
%A B. R. Srivatsa Kumar
%A Shruthi
%A D. Ranganatha
%T Some new congruences modulo $5$ for the general partition function
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 83-88
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_7_a8/
%G ru
%F IVM_2020_7_a8
B. R. Srivatsa Kumar; Shruthi; D. Ranganatha. Some new congruences modulo $5$ for the general partition function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 83-88. http://geodesic.mathdoc.fr/item/IVM_2020_7_a8/

[1] Berndt B. C., Ramanujan's Notebooks, v. III, Springer, New York, 1991 | MR | Zbl

[2] Ramanathan K. G., “Identities and congruences of the Ramanujan type”, Canad. J. Math., 2 (1950), 168–178 | DOI | MR | Zbl

[3] Atkin A. O.L., “Ramanujan congruences for $p_k(n)$”, Canad. J. Math., 20 (1968), 67–78 | MR | Zbl

[4] Newmann M., “An identity for the coefficients of certain modular forms”, J. Lond. Math. Soc., 30 (1955), 488–493 | DOI | MR

[5] Newmann M., “Congruence for the coefficients of modular forms and some new congruences for the partition function”, Canad. J. Math., 9 (1957), 549–552 | DOI | MR

[6] Newmann M., “Some theorems about $p_k(n)$”, Canad. J. Math., 9 (1957), 68–70 | DOI | MR

[7] Andrews G. E., “The Theory of Partitions”, Encyclopedia of Math. and its Appl., v. 2, ed. G.-C. Rota, Addison-Wesley, Reading, 1976 ; Reprinted: Cambridge Univ. Press, London–New York, 1984 | MR | Zbl | Zbl

[8] Baruah N. D., Ojah K. K., “Some congruences deducible from Ramanujan's cubic continued fraction”, Int. J. Number Theory, 7 (2011), 1331–134 | MR

[9] Baruah N. D., Sarmah B. K., “Identities and congruences for the general partition and Ramanujan $\tau$ functions”, Indian J. of pure and Appl. Math., 44:5 (2013), 643–671 | DOI | MR | Zbl

[10] Boylan M., “Exceptional congruences for powers of the partition functions”, Acta Arith., 111 (2004), 187–203 | MR | Zbl

[11] Farkas H. M., Kra I., “Ramanujan Partition identities”, Contemporary Math., 240 (1999), 111–130 | DOI | MR | Zbl

[12] Gandhi J. M., “Congruences for $p_k(n)$ and Ramanujan's $\tau$ function”, Amer. Math. Mon., 70 (1963), 265–274 | MR | Zbl

[13] Gordon B., “Ramanujan congruences for $p_k\pmod{11^r}$”, Glasgow Math. J., 24 (1983), 107–123 | MR | Zbl

[14] Kiming I., Olsson J. B., “Congruences like Ramanujan's for powers of the partition function”, Arch. Math. (Basel), 59:4 (1992), 348–360 | MR | Zbl

[15] Ramanujan S., “Some properties of $p(n)$, the number of partitions of $n$”, Proc. Cambridge Phillos. Soc., 19 (1919), 207–210 | Zbl

[16] Ramanujan S., Congruence properties of partitions, Proc. Lond. Math. Soc., 18, 1919 | MR

[17] Ramanujan S., “Congruence properties of partitions”, Math. Z., 1921, 147–153 | MR

[18] Saikia N., Chetry J., “Infinite families of congruences modulo $7$ for Ramanujan's general partition function”, Ann. Math. Quebec., 42:1 (2018), 127–132 | DOI | MR | Zbl

[19] Hammond P., Lewis R., “Congruences in ordered pairs of partitions”, Int. J. Math. Math. Sci., 45 (2004), 2509–2512 | DOI | MR | Zbl

[20] Chen W. Y. C., Du D. K., Hou Q. H., Sun L. H., “Congruences of multi-partition functions modulo powers of primes”, Ramanujan J., 35 (2014), 1–19 | DOI | MR | Zbl

[21] Tang D., “Congruences modulo powers of $5$ for $k$-colored partitions”, J. Number Theory, 187 (2018), 198–214 | MR | Zbl