Some new congruences modulo $5$ for the general partition function
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 83-88

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work, we discover some new congruences modulo $5$ for $p_r(n)$, the general partition function by restricting $r$ to some sequence of negative integers. Our emphasis throughout this paper is to exhibit the use of $q$-identities to generate the congruences for $p_r(n)$.
Keywords: $q$-identity, Ramanujan's general partition function.
Mots-clés : Partition congruence
@article{IVM_2020_7_a8,
     author = {B. R. Srivatsa Kumar and Shruthi and D. Ranganatha},
     title = {Some new congruences modulo $5$ for the general partition function},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {83--88},
     publisher = {mathdoc},
     number = {7},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_7_a8/}
}
TY  - JOUR
AU  - B. R. Srivatsa Kumar
AU  - Shruthi
AU  - D. Ranganatha
TI  - Some new congruences modulo $5$ for the general partition function
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 83
EP  - 88
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_7_a8/
LA  - ru
ID  - IVM_2020_7_a8
ER  - 
%0 Journal Article
%A B. R. Srivatsa Kumar
%A Shruthi
%A D. Ranganatha
%T Some new congruences modulo $5$ for the general partition function
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 83-88
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_7_a8/
%G ru
%F IVM_2020_7_a8
B. R. Srivatsa Kumar; Shruthi; D. Ranganatha. Some new congruences modulo $5$ for the general partition function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 83-88. http://geodesic.mathdoc.fr/item/IVM_2020_7_a8/