The Euler summation of numerical series
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 76-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

A combinatorial equality was proved, which involves k-order differences and binomial coefficients as well. The Euler's summing of a sequence connects with calculation of all differences. Regularity of summing function means the coincidence with “ordinary” sum, if the last exists. As a consequence of proving combinatorial equality the simple proof of regularity Euler's summing was given.
Keywords: summing of seriesies, Euler's summing, regularity of summing functions.
@article{IVM_2020_7_a7,
     author = {N. I. Dubrovin},
     title = {The {Euler} summation of numerical series},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {76--82},
     publisher = {mathdoc},
     number = {7},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_7_a7/}
}
TY  - JOUR
AU  - N. I. Dubrovin
TI  - The Euler summation of numerical series
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 76
EP  - 82
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_7_a7/
LA  - ru
ID  - IVM_2020_7_a7
ER  - 
%0 Journal Article
%A N. I. Dubrovin
%T The Euler summation of numerical series
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 76-82
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_7_a7/
%G ru
%F IVM_2020_7_a7
N. I. Dubrovin. The Euler summation of numerical series. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 76-82. http://geodesic.mathdoc.fr/item/IVM_2020_7_a7/

[1] Vorobev N. N., Teoriya ryadov, Nauka, M., 1979 | MR

[2] Grekhem R., Knut D., Patashnik O., Konkretnaya matematika, BINOM; Mir, 2006