The Euler summation of numerical series
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 76-82
Cet article a éte moissonné depuis la source Math-Net.Ru
A combinatorial equality was proved, which involves k-order differences and binomial coefficients as well. The Euler's summing of a sequence connects with calculation of all differences. Regularity of summing function means the coincidence with “ordinary” sum, if the last exists. As a consequence of proving combinatorial equality the simple proof of regularity Euler's summing was given.
Keywords:
summing of seriesies, Euler's summing, regularity of summing functions.
@article{IVM_2020_7_a7,
author = {N. I. Dubrovin},
title = {The {Euler} summation of numerical series},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {76--82},
year = {2020},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2020_7_a7/}
}
N. I. Dubrovin. The Euler summation of numerical series. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 76-82. http://geodesic.mathdoc.fr/item/IVM_2020_7_a7/
[1] Vorobev N. N., Teoriya ryadov, Nauka, M., 1979 | MR
[2] Grekhem R., Knut D., Patashnik O., Konkretnaya matematika, BINOM; Mir, 2006