On technical stability for sets of trajectories of discrete systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 63-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

The technical (practical) stability problem for a set of trajectories of discrete systems on a metric space of nonempty convex compact sets in $ \Bbb R ^ n $ is considered. On the basis of known results of convex geometry and comparison method, an approach of constructing the auxiliary Lyapunov functionals for the study of technical stability in terms of two measures of evolutionary equations with Hukuhara difference operator is proposed. The problem of estimating the solutions of equations is reduced to the study of finite-dimensional difference equations of comparison. Examples of technical stability study are given to illustrate the constructiveness of this approach.
Keywords: technical stability in terms of two measures, comparison method, mixed volume, Lyapunov functional, set of discrete systems, Hukuhara operator.
@article{IVM_2020_7_a6,
     author = {V. S. Denysenko},
     title = {On technical stability for sets of trajectories of discrete systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {63--75},
     publisher = {mathdoc},
     number = {7},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_7_a6/}
}
TY  - JOUR
AU  - V. S. Denysenko
TI  - On technical stability for sets of trajectories of discrete systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 63
EP  - 75
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_7_a6/
LA  - ru
ID  - IVM_2020_7_a6
ER  - 
%0 Journal Article
%A V. S. Denysenko
%T On technical stability for sets of trajectories of discrete systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 63-75
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_7_a6/
%G ru
%F IVM_2020_7_a6
V. S. Denysenko. On technical stability for sets of trajectories of discrete systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 63-75. http://geodesic.mathdoc.fr/item/IVM_2020_7_a6/

[1] Blasi F. S., Iervolino F., “Equazioni differentiali con soluzioni a valore compatto convesso”, Bull. Unione mat. Ital., 4:2 (1969), 491–501 | MR

[2] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986 | MR

[3] Lakshmikantham V., Gnana Bhaskar T., Vasundhara Devi J., Theory of set differential equations in metric spaces, Cambridge Sci. Publ., London, 2006 | MR | Zbl

[4] Park J. Y., Han H. K., “Existence and uniqueness theorem for a solution of fuzzy differential equations”, Int. J. Math. and Math. Sci., 22:2 (1999), 271–279 | MR | Zbl

[5] Plotnikov A. V., Differentsialnye vklyucheniya s proizvodnoi Khukukhary i nekotorye zadachi upravleniya, Dep. v VINITI, No 2036-82.12, Odessa, 1982

[6] Moiseev N. D., “O nekotorykh metodakh teorii tekhnicheskoi ustoichivosti”, Tr. Voen.-vozd. akademiya im. Zhukovskogo, 135 (1945)

[7] Moiseev N. D., Ocherki razvitiya teorii ustoichivosti, Gostekhizdat, M.–L., 1949

[8] Chetaev N. G., “O vybore parametrov ustoichivoi mekhanicheskoi sistemy”, PMM, 15 (1951), 371–372 | Zbl

[9] Karacharov K. A., Pilyutik A. G., Vvedenie v tekhnicheskuyu teoriyu ustoichivosti dvizheniya, Fizmatgiz, M., 1962

[10] Martynyuk A. A., Prakticheskaya ustoichivost dvizheniya, Nauk. dumka, Kiev, 1983

[11] Lakshmikantham V., Leela S., Martynyuk A. A., Practical stability of nonlinear systems, World Scientific, Singapore, 1990 | MR | Zbl

[12] Ocheretnyuk E. V., Slynko V. I., “Otsenki ob'ema reshenii nekotorykh differentsialnykh uravnenii s proizvodnoi Khukukhary”, Matem. zametki, 97:3 (2015), 440–447 | MR | Zbl

[13] Ocheretnyuk E. V., Slynko V. I., “Kachestvennyi analiz reshenii nelineinykh differentsialnykh uravnenii s proizvodnoi Khukukhary v prostranstve $\mathrm{conv}(\Bbb R^2)$”, Differents. uravneniya, 51:8 (2015), 1004–1018 | MR | Zbl

[14] Slyn'ko V. I., “Stability in terms of two measures for set difference equations in space $\mathrm{conv}(\Bbb R^n)$”, Appl. Anal., 96:2 (2017), 278–292 | MR | Zbl

[15] Aleksandrov A. D., Izbrannye raboty, v. 1, Geometriya i prilozheniya, Nauka, Novosibirsk, 2006

[16] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[17] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988