On solvability of conjugation problems with non-ideal contact conditions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 18-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article we examine the questions of regular solvability in the Sobolev spaces of the transmission problems with transmission conditions of non-ideal contact type for parabolic second order systems. A solution has all generalized derivatives occurring in the system summable to some power $p\in (1,\infty)$. At the interface the limit values of the conormal derivatives are expressed trough the limit values of a solution. The problem does not belong to the class of classical diffraction problems and arises when describing heat-and-mass transfer processes. The proof relies on a priori bounds and the method of continuation in a parameter.
Mots-clés : transmission problem
Keywords: discontinuous coefficient, parabolic system, heat-and-mass transfer.
@article{IVM_2020_7_a2,
     author = {V. A. Belonogov and S. G. Pyatkov},
     title = {On solvability of conjugation problems with non-ideal contact conditions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {18--32},
     publisher = {mathdoc},
     number = {7},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_7_a2/}
}
TY  - JOUR
AU  - V. A. Belonogov
AU  - S. G. Pyatkov
TI  - On solvability of conjugation problems with non-ideal contact conditions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 18
EP  - 32
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_7_a2/
LA  - ru
ID  - IVM_2020_7_a2
ER  - 
%0 Journal Article
%A V. A. Belonogov
%A S. G. Pyatkov
%T On solvability of conjugation problems with non-ideal contact conditions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 18-32
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_7_a2/
%G ru
%F IVM_2020_7_a2
V. A. Belonogov; S. G. Pyatkov. On solvability of conjugation problems with non-ideal contact conditions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 18-32. http://geodesic.mathdoc.fr/item/IVM_2020_7_a2/

[1] Baehr H. D., Stephan K., Heat and Mass Transfer, Springer-Verlag, Berlin–Heidelberg, 2006

[2] Ladyzhenskaya O. A., Uraltseva N. N., Solonnikov V. A., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1968 | MR

[3] Ladyzhenskaya O. A., Rivkind V. Ya., Uraltseva N. N., “O klassicheskoi razreshimosti zadach difraktsii dlya uravnenii ellipticheskogo i parabolicheskogo tipov”, Dokl. AN SSSR, 158:3 (1964), 513–515 | Zbl

[4] Ladyzhenskaya O. A., Rivkind V. Ya., Uraltseva N. N., “O klassicheskoi razreshimosti zadach difraktsii”, Tr. MIAN SSSR, 92, 1966, 116–146 | Zbl

[5] Oleinik O. A., “Ob uravneniyakh ellipticheskogo i parabolicheskogo tipa s razryvnymi koeffitsientami”, UMN, 14:5(89) (1959), 164–166

[6] Oleinik O. A., “Kraevye zadachi dlya lineinykh uravnenii ellipticheskogo i parabolicheskogo tipa s razryvnymi koeffitsientami”, Izv. Akademii Nauk SSSR, Ser. matem., 25 (1961), 3–20 | Zbl

[7] Sheftel Z. G., “Razreshimost v $L_p$ i klassicheskaya razreshimost obschikh granichnykh zadach dlya ellipticheskikh uravnenii s razryvnymi koeffitsientami”, UMN, 19:4(118) (1964), 230–232

[8] Sheftel Z. G., “Otsenki v $L_p$ reshenii ellipticheskikh uravnenii s razryvnymi koeffitsientami, udovletvoryayuschikh obschim granichnym usloviyam i usloviyam sopryazheniya”, Dokl. AN SSSR, 149:1 (1963), 48–51 | Zbl

[9] Schechter M., “A generalization of the problem of transmission”, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze 3$^e$, 14:3 (1960), 207–236 | MR | Zbl

[10] Zhitarashu N. V., “Apriornye otsenki i razreshimost obschikh kraevykh zadach”, Dokl. AN SSSR, 165:1 (1965), 24–27 | Zbl

[11] Zhitarashu N. V., “Shauderovskie otsenki i razreshimost obschikh kraevykh zadach dlya obschikh parabolicheskikh sistem s razryvnymi koeffitsientami”, Dokl. AN SSSR, 169:3 (1966), 511–514 | Zbl

[12] Prüss V., Simonett G., Moving Interfaces and Quasilinear Parabolic Evolution Equations, Birkhauser Publishing, Basel, 2016 | MR | Zbl

[13] Simon L., “On contact problems for nonlinear parabolic functional differential equations”, Electronic J. of Qualit. Theory of Diff. Equat., 22 (2004), 1–11 | MR

[14] Nomirovskii D. A., “Obobschennaya razreshimost parabolicheskikh sistem s neodnorodnymi usloviyami sopryazheniya tipa neidealnogo kontakta”, Differents. uravneniya, 40:10 (2004), 1390–1399 | MR | Zbl

[15] Jovanovi B. S., Vulkov L. G., “Formulation and analysis of a parabolic transmission problem on disjoint intervals”, Publ. De L'Institut Math. Nouvelle Ser., 91:105 (2012), 111–123 | DOI | MR | Zbl

[16] Abreu A., Orlande H. R.B., Naveira-Cotta C. P., Quaresma J. N.N., Cotta R. M., “Identification of contact failures in multi-layered composites”, Proc. of the ASME 2011 International Design Engineering Technical Conferences Computers and Information in Engineering Conference IDETC/CIE (2011 August 28–31), 2011, 1–9 | Zbl

[17] Lugon J.Jr., Neto A. J. S., “An inverse problem of parameter estimation in simultaneous heat and mass transfer in a one-dimensional porous medium”, Proceedings of COBEM 2003 17th International Congress of Mechanical Engineering (November 10–14), 2003, 1–11

[18] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980

[19] Denk R., Hieber M., Prüss J., “Optimal $L_{p}-L_{q}$-estimates for parabolic boundary value problems with inhomogeneous data”, Math. Z., 257:1 (2007), 193–224 | DOI | MR | Zbl

[20] Pyatkov S. G., Verzhbitskii M. A., “O nekotorykh obratnykh zadachakh ob opredelenii granichnykh rezhimov”, Matem. zametki SVFU, 23:2 (2016), 3–18 | MR | Zbl

[21] Grisvard P., “Equations differentielles abstraites”, Ann. Scient. Ec. Norm. Sup., $4^{e}$ series, 2 (1969), 311–395 | MR | Zbl

[22] Solonnikov V. A., “O kraevykh zadachakh dlya lineinykh parabolicheskikh sistem obschego vida”, Tr. MIAN, 83, 1965, 3–163

[23] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986

[24] Amann H., “Nonhomogeneous linear and quasilinear elliptic and parabolic boundary-value problems”, Function Spaces, Diff. Operators and Nonlinear Anal., 133 (1992), 9–126 | DOI | MR

[25] Lieberman G. M., Second order parabolic differential equations, World Scientific Publishing Co. Pte. Ltd, Singapure, 1996 | MR | Zbl