On the sum of narrow orthogonally additive operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 3-9

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we consider orthogonally additive operators defined on a vector lattice $E$ and taking value in a Banach space $X$. We say that an orthogonally additive operator $T:E\to X$ is a narrow if for every $e\in E$ and $\varepsilon>0$ there exists a decomposition $e=e_1\sqcup e_2$ of $e$ into a sum of two disjoint fragments $e_1$ and $e_2$ such that $\|Te_1-Te_2\|\varepsilon$. It is proved that the sum of two orthogonally additive operators $S+T$ defined on Dedekind complete, atomless vector lattice and taking value in Banach space, where $S$ is a narrow operator and $T$ is a $C$-compact laterally-to-norm continuous operator, is a narrow operator as well.
Keywords: vector lattice, orthogonally additive operator, narrow operator, laterally-to-norm continuous operator, $C$-compact operator.
@article{IVM_2020_7_a0,
     author = {N. M. Abasov},
     title = {On the sum of narrow orthogonally additive operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--9},
     publisher = {mathdoc},
     number = {7},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_7_a0/}
}
TY  - JOUR
AU  - N. M. Abasov
TI  - On the sum of narrow orthogonally additive operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 3
EP  - 9
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_7_a0/
LA  - ru
ID  - IVM_2020_7_a0
ER  - 
%0 Journal Article
%A N. M. Abasov
%T On the sum of narrow orthogonally additive operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 3-9
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_7_a0/
%G ru
%F IVM_2020_7_a0
N. M. Abasov. On the sum of narrow orthogonally additive operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2020_7_a0/