On the sum of narrow orthogonally additive operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we consider orthogonally additive operators defined on a vector lattice $E$ and taking value in a Banach space $X$. We say that an orthogonally additive operator $T:E\to X$ is a narrow if for every $e\in E$ and $\varepsilon>0$ there exists a decomposition $e=e_1\sqcup e_2$ of $e$ into a sum of two disjoint fragments $e_1$ and $e_2$ such that $\|Te_1-Te_2\|\varepsilon$. It is proved that the sum of two orthogonally additive operators $S+T$ defined on Dedekind complete, atomless vector lattice and taking value in Banach space, where $S$ is a narrow operator and $T$ is a $C$-compact laterally-to-norm continuous operator, is a narrow operator as well.
Keywords: vector lattice, orthogonally additive operator, narrow operator, laterally-to-norm continuous operator, $C$-compact operator.
@article{IVM_2020_7_a0,
     author = {N. M. Abasov},
     title = {On the sum of narrow orthogonally additive operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--9},
     publisher = {mathdoc},
     number = {7},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_7_a0/}
}
TY  - JOUR
AU  - N. M. Abasov
TI  - On the sum of narrow orthogonally additive operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 3
EP  - 9
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_7_a0/
LA  - ru
ID  - IVM_2020_7_a0
ER  - 
%0 Journal Article
%A N. M. Abasov
%T On the sum of narrow orthogonally additive operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 3-9
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_7_a0/
%G ru
%F IVM_2020_7_a0
N. M. Abasov. On the sum of narrow orthogonally additive operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2020_7_a0/

[1] Popov M. M., Plichko A. M., “Symmetric function spaces on atomless probability spaces”, Diss. Math. (Rozprawy Math.), 306 (1990), 1–85 | MR

[2] Popov M., Randrianantoanina B., Narrow Operators on Function Spaces and Vector Lattices, De Gruyter, 2013 | MR | Zbl

[3] Maslyuchenko O. V., Mykhaylyuk V. V., Popov M. M., “A lattice approach to narrow operators”, Positivity, 13:4 (2009), 459–495 | DOI | MR | Zbl

[4] Pliev M., “Narrow operators on lattice-normed spaces”, Cent. Eur. J. Math., 9:6 (2011), 1276–1287 | DOI | MR | Zbl

[5] Abasov N. M., Pliev M. A., “O summe uzkogo i $C$-kompaktnogo operatorov”, Vladikavkazsk. matem. zhurn., 20:1 (2018), 3–9 | MR

[6] Mykhaylyuk V., Popov M., “On sums of narrow operators on Köthe function space”, J. Math. Anal. Appl., 404 (2013), 554–561 | DOI | MR | Zbl

[7] Mykhaylyuk V., “On sums of narrow and a compact operators”, J. Funct. Anal., 404 (2014), 5912–5920 | DOI | MR

[8] Kusraeva Z. A., “Powers of quasi-Banach lattices and orthogonally additive polynomials”, J. Math. Anal. Appl., 458:1 (2018), 767–780 | DOI | MR | Zbl

[9] Pliev M. A., Fan S., “Uzkie ortogonalno additivnye operatory v reshetochno-normirovannykh prostranstvakh”, Sib. matem. zhurn., 58:1 (2017), 174–184 | MR | Zbl

[10] Orlov V., Pliev M., Rode D., “Domination problem for AM-compact abstract Uryson operators”, Arch. der Math., 107:5 (2016), 543–552 | DOI | MR | Zbl

[11] Pliev M. A., Popov M. M., “O prodolzhenii abstraktnykh operatorov Urysona”, Sib. matem. zhurn., 57:3 (2016), 700–708 | MR | Zbl

[12] Pliev M., “Domination problem for narrow orthogonally additive operators”, Positivity, 21:1 (2017), 23–33 | DOI | MR | Zbl

[13] Pliev M., Popov M., “Narrow orthogonally additive operators”, Positivity, 18:4 (2014), 641–667 | DOI | MR | Zbl

[14] Aliprantis C. D., Burkinshaw O., Positive Operators, Springer, Dordrecht, 2006 | MR | Zbl

[15] Kusraev A. G., Mazhoriruemye operatory, Nauka, M., 2003 | MR

[16] Pliev M., Ramdane K., “Order unbounded orthogonally additive operators in vector lattices”, Mediterranean J. Math., 2 (2018) | MR