Local groups and their representations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 73-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the notion of a local group is applied in the context of operator algebras, and $C^*$-algebraic constructions are proposed related to the local group. For local group we define $*$-representation and strong $*$-representation which are connected by the extension of the local group. Local group allows you to define the regular representation which is a $*$-representation, and the respective reduced $C^*$-algebra, the last is graded over the extension of the local group.
Keywords: Local group, partial isometry, group partial representation, regular representation, graded $C^*$-algebra.
@article{IVM_2020_6_a8,
     author = {S. A. Grigoryan and A. Yu. Kuznetsova},
     title = {Local groups and their representations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {73--78},
     publisher = {mathdoc},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_6_a8/}
}
TY  - JOUR
AU  - S. A. Grigoryan
AU  - A. Yu. Kuznetsova
TI  - Local groups and their representations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 73
EP  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_6_a8/
LA  - ru
ID  - IVM_2020_6_a8
ER  - 
%0 Journal Article
%A S. A. Grigoryan
%A A. Yu. Kuznetsova
%T Local groups and their representations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 73-78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_6_a8/
%G ru
%F IVM_2020_6_a8
S. A. Grigoryan; A. Yu. Kuznetsova. Local groups and their representations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 73-78. http://geodesic.mathdoc.fr/item/IVM_2020_6_a8/

[1] Li X., Semigroups $C^{*}$-algebras and amenability of semigroups, 22 Feb. 2012, arXiv: 1105.5539v2 [math.OA] | MR

[2] Nica A., “$C^{*}$-algebras generated by isometries and Wiener-Hopf operators”, J. Operator Theory, 27 (1992), 17–52 | MR | Zbl

[3] Cuntz J., “$C^{*}$-algebras associated with the $ax+b$-semigroups over $\mathbb{N}$”, $K$-theory and Noncommutative Geom. (Valladolid, 2006), Europian Math. Soc., Zürich, 2008, 201–215 | MR | Zbl

[4] Exel R., Vershik A., $C^{*}$-algebras of irreversible dynamical systems, 2002, arXiv: math/0203185v1 [math.OA] | MR

[5] Stacey P. J., “Crossed product of $C^{*}$-algebras by $^{*}$-endomorphisms”, J. Austral. Math. Soc., Ser. A, 54 (1993), 204–212 | DOI | MR | Zbl

[6] Adji S., Laca M., Nilsen M., and Raeburn I., “Crossed products by semigroups of endomorphisms and the Toeplitz algebras of ordered groups”, Proc. Amer. Math. Soc., 122 (1994), 1133–1141 | DOI | MR | Zbl

[7] Murphy G. J., “Crossed products of $C^*$-algebras by endomorphisms”, Integral Equat. Oper. Theory, 24 (1996), 298–319 | DOI | MR | Zbl

[8] Exel R., Partial Dynamical Systems, Fell Bundles and Applications, http://mtm.ufsc.br/ẽxel/papers/pdynsysfellbun.pdf

[9] Anantharaman-Delaroche C., “Purely infinite $C^*$-algebras arising from dynamical systems”, Bull. Soc. math. France, 125 (1997), 199–225 | DOI | MR | Zbl

[10] Renault J., Cartan subalgebras in $C^{*}$-algebras, 2008, arXiv: 0803.2284v1 [math.OA] | MR

[11] Deacony V., “Grouppoids associated with endomorphisms”, Trans. Amer. Math. Soc., 347 (1995), 1779–1786 | MR

[12] Raeburn I., On graded $C^*$-algebras, 13 Jul. 2017, arXiv: 1707.04215v1 [math.OA] | MR | Zbl

[13] Pontryagin L. S., Nepreryvnye gruppy, GONTI NKTP SSSR, M., 1938 | MR

[14] Grigoryan S., Kuznetsova A., “On a grading of the Cuntz algebra”, Lobachevskii J. Math., 40:10 (2019), 1479–1482 | MR | Zbl