Approximation of functions of a complex variable by Fourier sums in orthogonal systems in $L_2$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 65-72
Voir la notice de l'article provenant de la source Math-Net.Ru
The sharp inequalities of Jackson-Stechkin type inequalities between the best approximation $E_{n-s-1}(f^{(s)}) (s=\overline{0,r}, r\in\mathbb{N})$ of successive derivatives $f^{(s)} (s=\overline{0,r}, r\in\mathbb{N})$ of analytic functions $f\in L_{2}(U)$ in the disk $U:=\left\{z: |z|1\right\}$ as for special module of continuity $\Omega_{m}$ of $m$th order satisfying the condition $$\Omega_{m}\left(f^{(r)},t\right)_{2}\leq\Phi(t), 01,$$ where $\Phi$ is give majorant and also for Peetre $\mathscr{K}$-functional satisfying the constraint $$\mathscr{K}_{m}\left(f^{(r)},t^{m}\right)\leq\Phi(t^{m}), 01,$$ were obtained.
Keywords:
the generalized module of continuity, generalized translation operator, orthonormal system of functions, Jackson–Stechkin inequality, $\mathscr{K}$-functional.
@article{IVM_2020_6_a7,
author = {M. Sh. Shabozov and M. S. Saidusaynov},
title = {Approximation of functions of a complex variable by {Fourier} sums in orthogonal systems in $L_2$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {65--72},
publisher = {mathdoc},
number = {6},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2020_6_a7/}
}
TY - JOUR AU - M. Sh. Shabozov AU - M. S. Saidusaynov TI - Approximation of functions of a complex variable by Fourier sums in orthogonal systems in $L_2$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 65 EP - 72 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_6_a7/ LA - ru ID - IVM_2020_6_a7 ER -
%0 Journal Article %A M. Sh. Shabozov %A M. S. Saidusaynov %T Approximation of functions of a complex variable by Fourier sums in orthogonal systems in $L_2$ %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2020 %P 65-72 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2020_6_a7/ %G ru %F IVM_2020_6_a7
M. Sh. Shabozov; M. S. Saidusaynov. Approximation of functions of a complex variable by Fourier sums in orthogonal systems in $L_2$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 65-72. http://geodesic.mathdoc.fr/item/IVM_2020_6_a7/