Approximation of functions of a complex variable by Fourier sums in orthogonal systems in $L_2$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 65-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The sharp inequalities of Jackson-Stechkin type inequalities between the best approximation $E_{n-s-1}(f^{(s)}) (s=\overline{0,r}, r\in\mathbb{N})$ of successive derivatives $f^{(s)} (s=\overline{0,r}, r\in\mathbb{N})$ of analytic functions $f\in L_{2}(U)$ in the disk $U:=\left\{z: |z|1\right\}$ as for special module of continuity $\Omega_{m}$ of $m$th order satisfying the condition $$\Omega_{m}\left(f^{(r)},t\right)_{2}\leq\Phi(t), 01,$$ where $\Phi$ is give majorant and also for Peetre $\mathscr{K}$-functional satisfying the constraint $$\mathscr{K}_{m}\left(f^{(r)},t^{m}\right)\leq\Phi(t^{m}), 01,$$ were obtained.
Keywords: the generalized module of continuity, generalized translation operator, orthonormal system of functions, Jackson–Stechkin inequality, $\mathscr{K}$-functional.
@article{IVM_2020_6_a7,
     author = {M. Sh. Shabozov and M. S. Saidusaynov},
     title = {Approximation of functions of a complex variable by {Fourier} sums in orthogonal systems in $L_2$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {65--72},
     publisher = {mathdoc},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_6_a7/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - M. S. Saidusaynov
TI  - Approximation of functions of a complex variable by Fourier sums in orthogonal systems in $L_2$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 65
EP  - 72
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_6_a7/
LA  - ru
ID  - IVM_2020_6_a7
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A M. S. Saidusaynov
%T Approximation of functions of a complex variable by Fourier sums in orthogonal systems in $L_2$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 65-72
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_6_a7/
%G ru
%F IVM_2020_6_a7
M. Sh. Shabozov; M. S. Saidusaynov. Approximation of functions of a complex variable by Fourier sums in orthogonal systems in $L_2$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 65-72. http://geodesic.mathdoc.fr/item/IVM_2020_6_a7/

[1] Smirnov V. I., Lebedev N. A., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.–L., 1964

[2] Abilov V. A., Abilova F. V., Kerimov M. K., “Tochnye otsenki skorosti skhodimosti ryadov Fure funktsii kompleksnoi peremennoi v prostranstve $L_{2}(D,p(z))$”, ZhVMMF, 50:6 (2010), 999–1004 | MR | Zbl

[3] Shabozov M. Sh., Saidusainov M. S., “Srednekvadratichnoe priblizhenie funktsii kompleksnoi peremennoi ryadami Fure v vesovom prostranstve Bergmana”, Vladikavk. matem. zhurn., 20:1 (2018), 86–97 | MR

[4] Saidusainov M. S., “Analiz odnoi teoremy o neravenstve Dzheksona–Stechkina v prostranstve Bergmana $B_{2}$”, Tr. IMM UrO RAN, 24, no. 4, 2018, 217–224 | MR

[5] Shabozov M. Sh., Saidusainov M. S., “Verkhnie grani priblizheniya nekotorykh klassov funktsii kompleksnoi peremennoi ryadami Fure v prostranstve $L_2$ i znacheniya $n$-poperechnikov”, Matem. zametki, 103:4 (2018), 617–631 | Zbl

[6] Bitsadze A. V., Osnovy teorii analiticheskikh funktsii kompleksnogo peremennogo, Nauka, M., 1984

[7] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980

[8] Mhaskar N. H., “Weighted polynomial Approximation”, J. Approx. Theory, 46:1 (1986), 100–110 | DOI | MR | Zbl

[9] Ditzian Z., Totik V., “$\mathscr{K}$-functionals and best polynomial approximation in weighted $L^{p}(\mathbb{R})$”, J. Approx. Theory, 46:1, 38–41 | MR | Zbl

[10] Saidusaynov M. S., “$\mathscr{K}$-functionals and exact values of $n$-widths in the Bergman space”, Ural Math. J., 3:2(5), 74–81 | DOI | MR

[11] Shevchuk I. A., Priblizhenie mnogochlenami i sledy nepreryvnykh na otrezke funktsii, Naukova dumka, Kiev, 1992