Discrete-time systems with frequency response of the Markov--Stieltjes type
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 36-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of discrete-time filters (systems) is selected, the frequency characteristics of which are functions of the Markov–Stieltjes type. A description of these filters is given in terms of their system function and impulse response. The properties of stationarity, causality, stability and reversibility are investigated. A wide class of filters with rational transfer functions is indicated, which is subject to the main results of the work.
Keywords: discrete time filter, discrete time system, Markov–Stieltjes type function, system function, transfer function, frequency response.
Mots-clés : impulse response
@article{IVM_2020_6_a5,
     author = {A. R. Mirotin and I. S. Kovaleva},
     title = {Discrete-time systems with frequency response of the {Markov--Stieltjes} type},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {36--47},
     publisher = {mathdoc},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_6_a5/}
}
TY  - JOUR
AU  - A. R. Mirotin
AU  - I. S. Kovaleva
TI  - Discrete-time systems with frequency response of the Markov--Stieltjes type
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 36
EP  - 47
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_6_a5/
LA  - ru
ID  - IVM_2020_6_a5
ER  - 
%0 Journal Article
%A A. R. Mirotin
%A I. S. Kovaleva
%T Discrete-time systems with frequency response of the Markov--Stieltjes type
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 36-47
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_6_a5/
%G ru
%F IVM_2020_6_a5
A. R. Mirotin; I. S. Kovaleva. Discrete-time systems with frequency response of the Markov--Stieltjes type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 36-47. http://geodesic.mathdoc.fr/item/IVM_2020_6_a5/

[1] Kovaleva I. S., Mirotin A. R., “Preobrazovanie Markova–Stiltesa mer i sistemy s diskretnym vremenem”, Probl. fiz., matem. i tekhn., 1:38 (2019), 56–60

[2] Kovaleva I. S., Mirotin A. R., “Teorema o svertke dlya preobrazovaniya Markova–Stiltesa”, Probl. fiz., matem. i tekhn., 3:16 (2013), 66–70

[3] Mirotin A. R., Kovalyova I. S., “The Markov–Stieltjes transform on Hardy and Lebesgue spaces”, Integral Transforms and Special Funct., 27:12 (2016), 995–1007 | DOI | MR | Zbl

[4] Mirotin A. R., Kovalyova I. S., “Corrigendum to our paper «The Markov–Stieltjes transform on Hardy and Lebesgue spaces»”, Integral Transforms and Special Funct., 28:5 (2017), 421–422 | DOI | MR | Zbl

[5] Mirotin A. R., Kovaleva I. S., “Obobschennyi operator Markova–Stiltesa v prostranstvakh Khardi i Lebega”, Tr. in-ta matem., 25:1 (2017), 39–50 | MR | Zbl

[6] Mirotin A. R., Garmonicheskii analiz na abelevykh polugruppakh, GGU im. F. Skoriny, Gomel, 2008

[7] King F. W., Hilbert transforms, in 2 Vol., v. 1, Cambridge Univ. Press, Cambridge, 2009 | MR

[8] Vyacheslavov N. S., Mochalina E. P., “Ratsionalnye priblizheniya funktsii tipa Markova–Stiltesa v prostranstvakh Khardi $H^p, 0

\leq\infty$”, Vestn. Moskovsk. un-ta. Ser. 1. Matem. Mekhan., 2008, no. 4, 3–13 | MR | Zbl

[9] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[10] Nikolski N. K., Operators, Functions, and Systems: An Easy Reading, v. 1, American Math. Soc., Providence, 2002 | MR

[11] Sibert I. M., Tsepi, signaly, sistemy, v 2-kh chastyakh, Mir, M., 1988

[12] Pekarskii A. A., “Nailuchshie ravnomernye ratsionalnye priblizheniya funktsii Markova”, Algebra i analiz, 7 (1995), 121–132

[13] Andersson J.-E., “Rational approximation to function like $x^\alpha$ in integral norms”, Anal. Math., 14:1 (1988), 11–25 | DOI | MR | Zbl

[14] Andersson J.-E., “Best rational approximation to Markov functions”, Approxim. Theory, 76:2 (1994), 219–232 | DOI | MR | Zbl

[15] Papoulis A., Signal analysis, McGrow Hill, NY, 1977 | Zbl

[16] Khemming R. V., Tsifrovye filtry, Sovetsk. radio, M., 1980

[17] Mirotin A. R., Atvinovskii A. A., “O nekotorykh svoistvakh funktsionalnogo ischisleniya zamknutykh operatorov v banakhovom prostranstve”, Probl. fiz., matem. i tekhn., 2016, no. 4, 63–67 | Zbl

[18] Atvinovskii A. A., Mirotin A. R., “Ob odnom funktsionalnom ischislenii zamknutykh operatorov v banakhovom prostranstve. II”, Izv. vuzov. Matem., 2015, no. 5, 3–16 | MR | Zbl

[19] Atvinovskii A. A., Mirotin A. R., “Obraschenie odnogo klassa operatorov v banakhovom prostranstve i nekotorye ego primeneniya”, Probl. fiz., matem. i tekhn., 3:16 (2013), 55–60 | MR

[20] Widder D. V., The Laplace transform, Princeton Univ. Press, N.J., 1946 | MR

[21] Akhiezer N. I., Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatlit, M., 1961