On the completeness of products of solutions to the Helmholtz equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 30-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is established that the family of pairwise products of solutions to the Helmholtz equation regular in a bounded domain $D \subset \mathbb{R}^3$, and fundamental solutions to this equation with singularities at points from a straight line ${\mathcal{L}} \subset \mathbb{R}^3$, ${\overline{D}} \cap {\mathcal{L}}=\emptyset$, is complete in $L_2(D)$.
Keywords: Helmholtz equation, fundamental solution, harmonic function, completeness.
@article{IVM_2020_6_a4,
     author = {M. Yu. Kokurin},
     title = {On the completeness of products of solutions to the {Helmholtz} equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {30--35},
     publisher = {mathdoc},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_6_a4/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - On the completeness of products of solutions to the Helmholtz equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 30
EP  - 35
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_6_a4/
LA  - ru
ID  - IVM_2020_6_a4
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T On the completeness of products of solutions to the Helmholtz equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 30-35
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_6_a4/
%G ru
%F IVM_2020_6_a4
M. Yu. Kokurin. On the completeness of products of solutions to the Helmholtz equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 30-35. http://geodesic.mathdoc.fr/item/IVM_2020_6_a4/

[1] Calderon A.–P., “On an inverse boundary value problem”, Seminar on Numerical Anal. Appl. Continuum Phys., Sociedade Brasileira de Matem., Rio de Janeiro, 1980, 65–73 | MR

[2] Isakov V., Inverse problems for partial differential equations, Springer, N.Y., 2006 | MR | Zbl

[3] Kenig C., Salo M., “Recent progress in the Calderon problem with partial data”, Inverse probl. and appl., Contemporary math., 615, AMS, Providence, R.I., 2014, 193–222 | DOI | MR | Zbl

[4] Ditkin V. A., Prudnikov A. P., Integralnye preobrazovaniya i operatsionnoe ischislenie, GIFML, M., 1961

[5] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, Fizmatlit, M., 1997 | MR

[6] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974

[7] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[8] Kokurin M. Yu., “O polnote proizvedenii garmonicheskikh funktsii i edinstvennosti resheniya obratnoi zadachi akusticheskogo zondirovaniya”, Matem. zametki, 104:5 (2018), 708–716 | MR | Zbl