On the completeness of products of solutions to the Helmholtz equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 30-35
Voir la notice de l'article provenant de la source Math-Net.Ru
It is established that the family of pairwise products of solutions to the Helmholtz equation regular in a bounded domain $D \subset \mathbb{R}^3$, and fundamental solutions to this equation with singularities at points from a straight line ${\mathcal{L}} \subset \mathbb{R}^3$, ${\overline{D}} \cap {\mathcal{L}}=\emptyset$, is complete in $L_2(D)$.
Keywords:
Helmholtz equation, fundamental solution, harmonic function, completeness.
@article{IVM_2020_6_a4,
author = {M. Yu. Kokurin},
title = {On the completeness of products of solutions to the {Helmholtz} equation},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {30--35},
publisher = {mathdoc},
number = {6},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2020_6_a4/}
}
M. Yu. Kokurin. On the completeness of products of solutions to the Helmholtz equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 30-35. http://geodesic.mathdoc.fr/item/IVM_2020_6_a4/