The Goursat and Cauchy problems for three-dimensional Bianchi equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 15-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the coefficient inverse Goursat and Cauchy problems with an additional search for the coefficients of the equation, a new approach to the allocation of solvability cases of these problems in quadratures is proposed. Instead of introducing additional boundary conditions, restrictions on the structure of the equation associated with the possibilities of its factorization are proposed.
Mots-clés : Goursat problem
Keywords: Cauchy problem, factorization, Riemann function, solvability in quadratures.
@article{IVM_2020_6_a2,
     author = {V. I. Zhegalov and L. B. Mironova},
     title = {The {Goursat} and {Cauchy} problems for three-dimensional {Bianchi} equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {15--20},
     publisher = {mathdoc},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_6_a2/}
}
TY  - JOUR
AU  - V. I. Zhegalov
AU  - L. B. Mironova
TI  - The Goursat and Cauchy problems for three-dimensional Bianchi equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 15
EP  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_6_a2/
LA  - ru
ID  - IVM_2020_6_a2
ER  - 
%0 Journal Article
%A V. I. Zhegalov
%A L. B. Mironova
%T The Goursat and Cauchy problems for three-dimensional Bianchi equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 15-20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_6_a2/
%G ru
%F IVM_2020_6_a2
V. I. Zhegalov; L. B. Mironova. The Goursat and Cauchy problems for three-dimensional Bianchi equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 15-20. http://geodesic.mathdoc.fr/item/IVM_2020_6_a2/

[1] Zhegalov V. I., Mironov A. N., Differentsialnye uravneniya so starshimi chastnymi proizvodnymi, Izd-vo Kazansk. matem. o-va, Kazan, 2001

[2] Zhegalov V. I., Mironov A. N., Utkina E. A., Uravneniya s dominiruyuschei chastnoi proizvodnoi, Izd-vo Kazansk. un-ta, Kazan, 2014

[3] Zhegalov V. I., “Trekhmernyi analog zadachi Gursa”, Neklassicheskie uravneniya i uravneniya smeshannogo tipa, IM SO AN SSSR, Novosibirsk, 1990, 94–98 | MR | Zbl

[4] Alekseev G. V., “Koeffitsientnye obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teplomassoperenosa”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 1055–1076 | MR | Zbl

[5] Kamynin V. L., “Obratnaya zadacha odnovremennogo opredeleniya pravoi chasti i mladshego koeffitsienta v parabolicheskom uravnenii so mnogimi prostranstvennymi peremennymi”, Matem. zametki, 97:3 (2015), 368–381 | MR | Zbl

[6] Kozhanov A. I., “Parabolicheskie uravneniya s neizvestnymi koeffitsientami, zavisyaschimi ot vremeni”, Zh. vychisl. matem. i matem. fiz., 57:6 (2017), 961–972 | Zbl

[7] Sabitov K. B., “Nachalno-granichnaya i obratnye zadachi dlya neodnorodnogo uravneniya smeshannogo parabolo-giperbolicheskogo uravneniya”, Matem. zametki, 102:3 (2017), 415–435 | MR | Zbl

[8] Zhegalov V. I., Sarvarova I. M., “K usloviyam razreshimosti zadachi Gursa v kvadraturakh”, Izv. vuzov. Matem., 2010, no. 3, 68–73

[9] Zhegalov V. I., Sozontova E. A., “Dopolnenie k sluchayam razreshimosti zadachi Gursa v kvadraturakh”, Differents. uravneniya, 53:2 (2017), 270–273 | MR

[10] Zhegalov V. I., Sozontova E. A., “K novym sluchayam razreshimosti zadachi Gursa v kvadraturakh”, Mater. Pyatnadtsatoi molodezhnoi nauchn. shkoly-konf. «Lobachevskie chteniya-2016» (Kazan, 24–29 noyabrya 2016), Tr. matem. tsentra im. N. I. Lobachevskogo, 53, ed. S.R. Nasyrov, Izd-vo Kazansk. matem. o-va, Izd-vo Akad. nauk RT, Kazan, 2016, 75–76

[11] Sevastyanov V. A., “Metod Rimana dlya trekhmernogo giperbolicheskogo uravneniya tretego poryadka”, Izv. vuzov. Matem., 1997, no. 5, 69–73 | MR | Zbl