Koch fractal in non-Euclidean geometries
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 99-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a spherical and a hyperbolic (on the Lobachevskii plane) analogues for the Koch curve and the Koch snowflake. The formulae describing metric characteristics of these fractals are given. We also suggest the method of construction for these curves with the help of the groups of rigid motions of the spaces in question.
Keywords: Koch curve, Koch snowflake, Koch island, spherical geometry, hyperbolic geometry, Lobachevskii geometry, $L$-system.
Mots-clés : fractal
@article{IVM_2020_6_a12,
     author = {P. I. Troshin},
     title = {Koch fractal in {non-Euclidean} geometries},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {99--103},
     publisher = {mathdoc},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_6_a12/}
}
TY  - JOUR
AU  - P. I. Troshin
TI  - Koch fractal in non-Euclidean geometries
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 99
EP  - 103
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_6_a12/
LA  - ru
ID  - IVM_2020_6_a12
ER  - 
%0 Journal Article
%A P. I. Troshin
%T Koch fractal in non-Euclidean geometries
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 99-103
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_6_a12/
%G ru
%F IVM_2020_6_a12
P. I. Troshin. Koch fractal in non-Euclidean geometries. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 99-103. http://geodesic.mathdoc.fr/item/IVM_2020_6_a12/

[1] Troshin P. I., “On generalization of Sierpiński gasket in Lobachevskii plane”, Lobachevskii J. Math., 38:4 (2017), 751–762 | DOI | MR | Zbl

[2] Barnsley M. F., Fractals everywhere, Acad. Press Professional, San Diego, 1988 | MR | Zbl

[3] Zubkova S. K., Troshin P. I., “Fraktalnyi attraktor v neevklidovoi geometrii na primere treugolnika Cerpinskogo”, Tr. matem. tsentra im. N.I. Lobachevskogo, 56, Izd-vo Kazansk. matem. o-va, Izd-vo Akad. nauk RT, Kazan, 2018, 128–130

[4] Lisenkov D. S., Troshin P. I., “Neevklidov analog attraktora pary lineinykh otobrazhenii na ploskosti”, Tr. matem. tsentra im. N.I. Lobachevskogo, 56, Izd-vo Kazansk. matem. o-va, Izd-vo Akad. nauk RT, Kazan, 2018, 174–177

[5] von Koch H., “Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire”, Arkiv för Matem., 1 (1904), 681–704

[6] Sosov E. N., Geometriya Lobachevskogo i ee primenenie v spetsialnoi teorii otnositelnosti, Uchebno-metod. posobie, Kazansk. un-t, Kazan, 2016

[7] Prusinkiewicz P., Lindenmayer Systems, Fractals, and Plants, Lecture Notes in Biomathematics, 79, Springer-Verlag, New York, 1989 | DOI | MR | Zbl

[8] Rodrigues O., “Des lois géométriques qui régissent les déplacements d'une systéme solide dans l'espace et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire”, J. Math. Pures Appl., 5 (1840), 380–440

[9] Piña E., “Rotations with Rodrigues' vector”, Eur. J. Phys., 32 (2011), 1171–1178 | DOI | Zbl