On parametric representations of orthogonal and symplectic matrices
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 93-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

Symplectic matrices are subject to certain conditions that are inherent to the Jacobian matrices of transformations preserving the Hamiltonian form of differential equations. A formula is derived that parameterizes symplectic matrices with symmetric matrices. An analogy is drawn between the obtained formula and the Cayley formula that connects orthogonal and antisymmetric matrices. It is shown that orthogonal and antisymmetric matrices are transformed by the covariant law when replacing the Cartesian coordinate system. Analogously, the covariance of transformations of symplectic and symmetric matriсes is proved.
Keywords: symplectic and symmetric matrixes, orthogonal and antisymmetric matrixes, covariance.
@article{IVM_2020_6_a11,
     author = {A. G. Petrov},
     title = {On parametric representations of orthogonal and symplectic matrices},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {93--98},
     publisher = {mathdoc},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_6_a11/}
}
TY  - JOUR
AU  - A. G. Petrov
TI  - On parametric representations of orthogonal and symplectic matrices
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 93
EP  - 98
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_6_a11/
LA  - ru
ID  - IVM_2020_6_a11
ER  - 
%0 Journal Article
%A A. G. Petrov
%T On parametric representations of orthogonal and symplectic matrices
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 93-98
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_6_a11/
%G ru
%F IVM_2020_6_a11
A. G. Petrov. On parametric representations of orthogonal and symplectic matrices. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 93-98. http://geodesic.mathdoc.fr/item/IVM_2020_6_a11/

[1] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[2] Chelnokov Yu. N., Kvaternionnye i bikvaternionnye modeli i metody mekhaniki tverdogo tela i ikh prilozheniya, FIZMATLIT, M., 2006

[3] Zhuravlev V. F., Osnovy teoreticheskoi mekhaniki, Nauka, M., 1997

[4] Petrov A. G., “Asimptoticheskie metody resheniya uravneniyakh Gamiltona s pomoschyu parametrizatsii kanonicheskikh preobrazovanii”, Dif. uravneniya, 40:5 (2004), 626–633 | MR

[5] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Editorial URSS, M., 2000