Sectional curvature of connections with vectorial torsion
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 86-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

Riemannian manifolds of sign-defined sectional curvature have been studied by many mathematicians, due to the close relationship between curvature and the topology of Riemannian manifolds. We investigate Riemannian manifolds whose metric connection is a connection with vectorial torsion. The Levi–Civita connection contains into this class of connections. Although the curvature tensor of these connections does not possess the symmetries of the Riemannian curvature tensor, it seems possible to determine sectional curvature. We study the question of a connectivity of the sectional curvature of connections with vectorial torsion and the sectional curvature of the Levi–Civita connection, or Riemannian curvature. We study the sign of sectional curvature of a connection with vectorial torsion. As the main test example, we consider Lie groups with a left-invariant Riemannian metric.
Keywords: sectional curvature, connection with vectorial torsion, Lie groups.
@article{IVM_2020_6_a10,
     author = {P. N. Klepikov and E. D. Rodionov and O. P. Khromova},
     title = {Sectional curvature of connections with vectorial torsion},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--92},
     publisher = {mathdoc},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_6_a10/}
}
TY  - JOUR
AU  - P. N. Klepikov
AU  - E. D. Rodionov
AU  - O. P. Khromova
TI  - Sectional curvature of connections with vectorial torsion
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 86
EP  - 92
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_6_a10/
LA  - ru
ID  - IVM_2020_6_a10
ER  - 
%0 Journal Article
%A P. N. Klepikov
%A E. D. Rodionov
%A O. P. Khromova
%T Sectional curvature of connections with vectorial torsion
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 86-92
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_6_a10/
%G ru
%F IVM_2020_6_a10
P. N. Klepikov; E. D. Rodionov; O. P. Khromova. Sectional curvature of connections with vectorial torsion. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 86-92. http://geodesic.mathdoc.fr/item/IVM_2020_6_a10/

[1] Gromov M., Znak i geometricheskii smysl krivizny, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2000

[2] Gromol D., Klingenberg V., Meier V., Rimanova geometriya v tselom, Mir, M., 1971

[3] Berger M., “Les varietes riemannienes homogenes normales a courbure strictement positive”, Ann. Sc. Norm. Pisa, 15 (1961) | MR | Zbl

[4] Wallach N. R., “Compact homogeneous Riemannian manifolds with strictly positive curvature”, Ann. Math., 2:96 (1972), 277–295 | DOI | MR | Zbl

[5] Bérard Bergery L., “Les variétés riemanniennes homogènes simplement connexes de dimension impaire àcourbure strictement positive”, J. Math. Pures Appl., 55 (1976), 47–67 | MR

[6] Alekseevskii D. V., “Homogeneous Riemannian spaces of negative curvature”, Math. Sb. (N.S.), 96 (1975), 93–117 | MR | Zbl

[7] Heintze E., “On homogeneous manifolds of negative curvature”, Mat. Ann., 211 (1974), 23–34 | DOI | MR | Zbl

[8] Bérard Bergery L., “Sur la courbure des métriques riemanniennes invariantes des groupes de Lie et des espaces homogènes”, Ann. Sci. École Norm. Sup., 4:11 (1978), 543–576 | MR

[9] Milnor J., “Curvatures of left invariant metrics on Lie groups”, Adv. Math., 21 (1976), 293–329 | DOI | MR | Zbl

[10] Nikonorov Yu. G, Rodionov E. D., Slavskii V. V., “Geometry of homogeneous Riemannian manifolds”, J. Math. Sci., 146:6 (2007), 6313–6390 | DOI | MR | Zbl

[11] Agricola I., Kraus M., “Manifolds with vectorial torsion”, Diff. Geometry and Appl., 46 (2016), 130–147 | DOI | MR

[12] Manuraja D., “Manifolds Admitting a semi-symmetric metric connection and a generalization of Shur's theorem”, Int. J. Contemp. Math. Sci., 3:25 (2018), 1223–1232 | MR

[13] Rodionov E. D., Slavskii V. V., “Curvature estimations of left invariant Riemannian metrics on three dimensional Lie groups”, Diff. Geometry and Appl., Proc. of the 7$^{th}$ Inter. Conf. (Brno, Masaryk Univ. in Brno (Czech Republic)), 1999, 111–126 | MR | Zbl