Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_6_a10, author = {P. N. Klepikov and E. D. Rodionov and O. P. Khromova}, title = {Sectional curvature of connections with vectorial torsion}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {86--92}, publisher = {mathdoc}, number = {6}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_6_a10/} }
TY - JOUR AU - P. N. Klepikov AU - E. D. Rodionov AU - O. P. Khromova TI - Sectional curvature of connections with vectorial torsion JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 86 EP - 92 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_6_a10/ LA - ru ID - IVM_2020_6_a10 ER -
P. N. Klepikov; E. D. Rodionov; O. P. Khromova. Sectional curvature of connections with vectorial torsion. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 86-92. http://geodesic.mathdoc.fr/item/IVM_2020_6_a10/
[1] Gromov M., Znak i geometricheskii smysl krivizny, NITs «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2000
[2] Gromol D., Klingenberg V., Meier V., Rimanova geometriya v tselom, Mir, M., 1971
[3] Berger M., “Les varietes riemannienes homogenes normales a courbure strictement positive”, Ann. Sc. Norm. Pisa, 15 (1961) | MR | Zbl
[4] Wallach N. R., “Compact homogeneous Riemannian manifolds with strictly positive curvature”, Ann. Math., 2:96 (1972), 277–295 | DOI | MR | Zbl
[5] Bérard Bergery L., “Les variétés riemanniennes homogènes simplement connexes de dimension impaire àcourbure strictement positive”, J. Math. Pures Appl., 55 (1976), 47–67 | MR
[6] Alekseevskii D. V., “Homogeneous Riemannian spaces of negative curvature”, Math. Sb. (N.S.), 96 (1975), 93–117 | MR | Zbl
[7] Heintze E., “On homogeneous manifolds of negative curvature”, Mat. Ann., 211 (1974), 23–34 | DOI | MR | Zbl
[8] Bérard Bergery L., “Sur la courbure des métriques riemanniennes invariantes des groupes de Lie et des espaces homogènes”, Ann. Sci. École Norm. Sup., 4:11 (1978), 543–576 | MR
[9] Milnor J., “Curvatures of left invariant metrics on Lie groups”, Adv. Math., 21 (1976), 293–329 | DOI | MR | Zbl
[10] Nikonorov Yu. G, Rodionov E. D., Slavskii V. V., “Geometry of homogeneous Riemannian manifolds”, J. Math. Sci., 146:6 (2007), 6313–6390 | DOI | MR | Zbl
[11] Agricola I., Kraus M., “Manifolds with vectorial torsion”, Diff. Geometry and Appl., 46 (2016), 130–147 | DOI | MR
[12] Manuraja D., “Manifolds Admitting a semi-symmetric metric connection and a generalization of Shur's theorem”, Int. J. Contemp. Math. Sci., 3:25 (2018), 1223–1232 | MR
[13] Rodionov E. D., Slavskii V. V., “Curvature estimations of left invariant Riemannian metrics on three dimensional Lie groups”, Diff. Geometry and Appl., Proc. of the 7$^{th}$ Inter. Conf. (Brno, Masaryk Univ. in Brno (Czech Republic)), 1999, 111–126 | MR | Zbl