An effective programming of GCD Algorithms for natural numbers
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 3-8
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the problem of acceleration of GCD algorithms for natural numbers based on the approximating k-ary algorithm. We suggest a new scheme of the algorithm implementation ensuring the value of the reduction coefficient $\rho=A_i/B_i$ at a stage of the procedure equal or exceeding $k$ where $k$ is a regulating parameter of computation not exceeding the size a computer word. This ensures a significant advantage of our algorithm against the classical Euclidean algorithm.
Keywords:
greatest common divisor, Euclidian GCD Algorithm, $k$-ary Algorithm, approximating $k$-ary Algorithm.
@article{IVM_2020_6_a0,
author = {Al Halidi Arkan Mohammed and Sh. T. Ishmukhametov},
title = {An effective programming of {GCD} {Algorithms} for natural numbers},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--8},
publisher = {mathdoc},
number = {6},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2020_6_a0/}
}
TY - JOUR AU - Al Halidi Arkan Mohammed AU - Sh. T. Ishmukhametov TI - An effective programming of GCD Algorithms for natural numbers JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 3 EP - 8 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_6_a0/ LA - ru ID - IVM_2020_6_a0 ER -
Al Halidi Arkan Mohammed; Sh. T. Ishmukhametov. An effective programming of GCD Algorithms for natural numbers. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 3-8. http://geodesic.mathdoc.fr/item/IVM_2020_6_a0/