On Gaussian self-similar random fields on a 2-adic plane
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 94-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article describes a new type of Gaussian fields on a two-dimensional 2-adic space, invariant under the translation group and group of scaling transformations (self-similar random fields). Fields are characterized by quadratic characteristic functionals defined by homogeneous generalized functions on a 2-adic space. The properties of the proposed generalized homogeneous functions are investigated and the positive definiteness of the correlation functionals is proved.
Keywords: Gaussian field, $p$-adic space, scaling transformation, characteristic functional, homo-geneous generalized function.
@article{IVM_2020_5_a9,
     author = {M. D. Missarov},
     title = {On {Gaussian} self-similar random fields on a 2-adic plane},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {94--99},
     publisher = {mathdoc},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_5_a9/}
}
TY  - JOUR
AU  - M. D. Missarov
TI  - On Gaussian self-similar random fields on a 2-adic plane
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 94
EP  - 99
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_5_a9/
LA  - ru
ID  - IVM_2020_5_a9
ER  - 
%0 Journal Article
%A M. D. Missarov
%T On Gaussian self-similar random fields on a 2-adic plane
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 94-99
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_5_a9/
%G ru
%F IVM_2020_5_a9
M. D. Missarov. On Gaussian self-similar random fields on a 2-adic plane. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 94-99. http://geodesic.mathdoc.fr/item/IVM_2020_5_a9/

[1] Sinai Ya. G., Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980

[2] Dobrushin R. L., “Gaussian and their Subordinated Self-similar Random Generalized Fields”, Ann. Prob., 7:1 (1979), 1–28 | DOI | MR | Zbl

[3] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-adicheskii analiz i matematicheskaya fizika, Fizmatlit, M., 1994 | MR

[4] Missarov M. D., “Renormalization group and renormalization theory in $p$-adic and adelic scalar models”, Adv. Sov. Math., 3 (1991), 143–161 | MR

[5] Missarov M. D., “Renormalization group solution of fermionic Dyson model”, Asymptotic Combinatorics with Application to Mathematical Physics, eds. V.A. Malyshev, A. M. Vershik, Kluwer Academic Publishers, Netherlands, 2002, 151–166 | DOI | MR | Zbl

[6] Missarov M. D., Shamsutdinov A. F., “Dinamika renormalizatsionnoi gruppy v nizhnei poluploskosti konstant svyazi fermionnoi ierarkhicheskoi modeli”, Izv. vuzov. Matem., 2015, no. 7, 69–74 | Zbl

[7] Missarov M. D., Shamsutdinov A. F., “Zonnaya struktura potoka renormalizatsionnoi gruppy v fermionnoi ierarkhicheskoi modeli”, TMF, 194:3 (2018), 436–444 | DOI | MR | Zbl

[8] Gelfand I. M., Graev M. I., Pyatetskii–Shapiro I. I., Teoriya predstavlenii i avtomorfnye funktsii, Obobschennye funktsii, 6, Nauka, M., 1966