Principal submodules in the Schwartz module
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 83-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the Schwartz module of entire functions of exponential type having polynomial growth along the real axis. This module is equipped with the non-metrisable locally convex topology. We establish that any principal submodule is the set of limits of the countable converging sequences which members are polynomials multiplied by the generator of the submodule. We also obtain one weak localizability weight criterion for principal submodules and some results concerning with the notion of «synthesizable sequence», which has been recently introduced by A. Baranov and Yu. Belov.
Keywords: entire functions, local description of ideals and submodules, Schwartz space, spectral synthesis.
@article{IVM_2020_5_a7,
     author = {N. F. Abuzyarova},
     title = {Principal submodules in the {Schwartz} module},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {83--88},
     publisher = {mathdoc},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_5_a7/}
}
TY  - JOUR
AU  - N. F. Abuzyarova
TI  - Principal submodules in the Schwartz module
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 83
EP  - 88
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_5_a7/
LA  - ru
ID  - IVM_2020_5_a7
ER  - 
%0 Journal Article
%A N. F. Abuzyarova
%T Principal submodules in the Schwartz module
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 83-88
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_5_a7/
%G ru
%F IVM_2020_5_a7
N. F. Abuzyarova. Principal submodules in the Schwartz module. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 83-88. http://geodesic.mathdoc.fr/item/IVM_2020_5_a7/

[1] Sebastyan-i-Silva Zh., “O nekotorykh klassakh LVP, vazhnykh v prilozheniyakh”, Matem. sb. perevodov in. st., 1:1 (1957), 60–77

[2] Levin B. Y., Lectures on entire functions, Rev. Edition, AMS, Prov., Rhode Island, 1996 (with Yu. Lyubarskii, M. Sodin, V. Tkachenko) | MR | Zbl

[3] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986

[4] Krasichkov–Ternovskii I. F., “Lokalnoe opisanie zamknutykh idealov i podmodulei analiticheskikh funktsii odnoi peremennoi. I, II”, Izv. AN SSSR, Ser. matem., 43:1, 44–66 ; 2 (1979), 309–341 | MR | MR

[5] Abuzyarova N. F., “Zamknutye podmoduli v module tselykh funktsii eksponentsialnogo tipa i polinomialnogo rosta na veschestvennoi osi”, Ufimsk. matem. zhurn., 6:4 (2014), 3–18 | MR

[6] Abuzyarova N. F., “Spektralnyi sintez v prostranstve Shvartsa beskonechno differentsiruemykh funktsii”, Dokl. RAN, 457:5 (2014), 510–513 | DOI | MR | Zbl

[7] Aleman A., Korenblum B., “Derivation-Invariant Subspaces of $C^{\infty}$”, Comp.Meth. and Funct. Theory, 8:2 (2008), 493–512 | DOI | MR | Zbl

[8] Abuzyarova N. F., “Spektralnyi sintez dlya operatora differentsirovaniya v prostranstve Shvartsa”, Matem. zametki, 102:2 (2017), 163–177 | DOI | MR | Zbl

[9] Aleman A., Baranov A., Belov Yu., “Subspaces of $C^{\infty}$ invariant under the differentiation”, J. Func. Anal., 268 (2015), 2421–2439 | DOI | MR | Zbl

[10] Abuzyarova N. F., “Nekotorye svoistva glavnykh podmodulei v module tselykh funktsii eksponentsialnogo tipa i polinomialnogo rosta na veschestvennoi osi”, Ufimsk. matem. zhurn., 8:1 (2016), 3–14 | MR

[11] Baranov A., Belov Yu., “Synthesizable differentiation-invariant subspaces”, Geometric and Funct. Anal., 29:1 (2019), 44–71 | DOI | MR | Zbl

[12] De Branges L., Hilbert spaces of entire functions, Prentice-Hall inc., N.J., 1968 | MR | Zbl

[13] Abuzyarova N. F., “O $2$-porozhdennosti slabo lokalizuemykh podmodulei v module tselykh funktsii eksponentsialnogo tipa i polinomialnogo rosta na veschestvennoi osi”, Ufimsk. matem. zhurn., 8:3 (2016), 8–21 | MR

[14] Abuzyarova N. F., “Principal submodules in the module of entire functions, which is dual to the Schwarz space, and weak spectral synthesis in the Schwartz space”, J. Math. Sci., 241:6 (2019), 658–671 | DOI | MR | Zbl