Inverse boundary value problem of the plane theory of elasticity
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 74-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the formulation of the inverse boundary value plane problem of the theory of elasticity. The solution of the problem can be reduced to the infinite system of linear equations.
Keywords: inverse boundary value problem, plane theory of elasticity, system of linear equations, eigenvalue.
@article{IVM_2020_5_a6,
     author = {E. A. Shirokova},
     title = {Inverse boundary value problem of the plane theory of elasticity},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {74--82},
     publisher = {mathdoc},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_5_a6/}
}
TY  - JOUR
AU  - E. A. Shirokova
TI  - Inverse boundary value problem of the plane theory of elasticity
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 74
EP  - 82
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_5_a6/
LA  - ru
ID  - IVM_2020_5_a6
ER  - 
%0 Journal Article
%A E. A. Shirokova
%T Inverse boundary value problem of the plane theory of elasticity
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 74-82
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_5_a6/
%G ru
%F IVM_2020_5_a6
E. A. Shirokova. Inverse boundary value problem of the plane theory of elasticity. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 74-82. http://geodesic.mathdoc.fr/item/IVM_2020_5_a6/

[1] Tumashev G. G., Nuzhin M. T., Obratnye kraevye zadachi i ikh prilozheniya, Izd-vo Kazansk. un-ta, 1965

[2] Muskhelishvili N. I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966 | MR

[3] Ivanshin P. N., “Metod postroeniya konformnogo otobrazheniya edinichnogo kruga na rimanovu poverkhnost”, Uchen. zap. Kazansk. un-ta, 160, 2018, 738–749 | MR

[4] Shirokova E. A., “O priblizhennom konformnom otobrazhenii edinichnogo kruga na odnosvyaznuyu oblast, ogranichennuyu zadannoi krivoi”, Izv. vuzov. Matem., 2014, no. 3, 57–67 | Zbl

[5] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 3, Nauka, M., 1966