Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_5_a4, author = {E. B. Menshikova and B. N. Khabibullin}, title = {A criterion for the sequence of roots of holomorphic function with restrictions on its growth}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {55--61}, publisher = {mathdoc}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_5_a4/} }
TY - JOUR AU - E. B. Menshikova AU - B. N. Khabibullin TI - A criterion for the sequence of roots of holomorphic function with restrictions on its growth JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 55 EP - 61 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_5_a4/ LA - ru ID - IVM_2020_5_a4 ER -
%0 Journal Article %A E. B. Menshikova %A B. N. Khabibullin %T A criterion for the sequence of roots of holomorphic function with restrictions on its growth %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2020 %P 55-61 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2020_5_a4/ %G ru %F IVM_2020_5_a4
E. B. Menshikova; B. N. Khabibullin. A criterion for the sequence of roots of holomorphic function with restrictions on its growth. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 55-61. http://geodesic.mathdoc.fr/item/IVM_2020_5_a4/
[1] Menshikova E. B., Khabibullin B. N., “K raspredeleniyu nulevykh mnozhestv golomorfnykh funktsii. II”, Funkts. analiz i ego prilozheniya, 53:1 (2019), 84–87 | DOI | MR | Zbl
[2] Khabibullin B. N., Rozit A. P., “K raspredeleniyu nulevykh mnozhestv golomorfnykh funktsii”, Funkts. analiz i ego prilozheniya, 52:1 (2018), 26–42 | DOI | MR | Zbl
[3] Khabibullin B. N., Khabibullin F. B., “K raspredeleniyu nulevykh mnozhestv golomorfnykh funktsii. III. Teoremy obrascheniya”, Funkts. analiz i ego prilozheniya, 53:2 (2019), 42–58 | DOI | MR | Zbl
[4] Ransford Th., Potential Theory in the Complex Plane, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[5] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980 | MR
[6] Khabibullin B. N., Rozit A. P., Khabibullina E. B., “Poryadkovye versii Teoremy Khana–Banakha i ogibayuschie. II. Primeneniya v teorii funktsii”, Kompleksn. analiz. Matem. fizika, Itogi nauki i tekhn. Ser. Sovremen. matem. i ee prilozheniya. Temat. obz., 162, VINITI RAN, M., 2019, 93–135
[7] Arsove M. G., “Functions representable as differences of subharmonic functions”, Trans. Amer. Math. Soc., 75 (1953), 327–365 | DOI | MR | Zbl
[8] Khabibullin B. N., “Posledovatelnosti nulei golomorfnykh funktsii, predstavlenie meromorfnykh funktsii i garmonicheskie minoranty”, Matem. sb., 198:2 (2007), 121–160 | DOI | Zbl
[9] Gamelin T. W., Uniform Algebras and Jensen Measures, Cambridge Univ. Press, Cambridge, 1978 | MR | Zbl
[10] Khabibullin B. N., “Kriterii (sub-)garmonichnosti i prodolzhenie (sub-)garmonicheskikh funktsii”, Sib. matem. zhurn., 44:4 (2003), 905–925 | MR | Zbl
[11] Khabibullin B. N., Baiguskarov T. Yu., “Logarifm modulya golomorfnoi funktsii kak minoranta dlya subgarmonicheskoi funktsii”, Matem. zametki, 99:4 (2016), 588–602 | DOI | Zbl
[12] Baiguskarov T. Yu., Talipova G. R., Khabibullin B. N., “Podposledovatelnosti nulei dlya klassov tselykh funktsii eksponentsialnogo tipa, vydelyaemykh ogranicheniyami na ikh rost”, Algebra i analiz, 28:2 (2016), 1–33 | MR