A criterion for the sequence of roots of holomorphic function with restrictions on its growth
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 55-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the paper is a criterion for a sequence of points in a domain of the complex plane, giving necessary and sufficient conditions under which this sequence of points is an exact sequence of zeros of some holomorphic function whose logarithm of modulus is majored by a given subharmonic function in the domain under consideration. Our criterion for the distribution of zeros of holomorphic functions with a given majorant is formulated in terms of special integral bounds and uses a new notion we recently introduced of affine balayage of measures. In one of our previous joint communications this criterion was announced without any proof. Here we fill this gap and give a criterion with exact definitions and a complete proof.
Keywords: holomorphic function, sequence of roots, balayage (sweeping out), subharmonic function, logarithmic potential.
@article{IVM_2020_5_a4,
     author = {E. B. Menshikova and B. N. Khabibullin},
     title = {A criterion for the sequence of roots of holomorphic function with restrictions on its growth},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {55--61},
     publisher = {mathdoc},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_5_a4/}
}
TY  - JOUR
AU  - E. B. Menshikova
AU  - B. N. Khabibullin
TI  - A criterion for the sequence of roots of holomorphic function with restrictions on its growth
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 55
EP  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_5_a4/
LA  - ru
ID  - IVM_2020_5_a4
ER  - 
%0 Journal Article
%A E. B. Menshikova
%A B. N. Khabibullin
%T A criterion for the sequence of roots of holomorphic function with restrictions on its growth
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 55-61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_5_a4/
%G ru
%F IVM_2020_5_a4
E. B. Menshikova; B. N. Khabibullin. A criterion for the sequence of roots of holomorphic function with restrictions on its growth. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 55-61. http://geodesic.mathdoc.fr/item/IVM_2020_5_a4/

[1] Menshikova E. B., Khabibullin B. N., “K raspredeleniyu nulevykh mnozhestv golomorfnykh funktsii. II”, Funkts. analiz i ego prilozheniya, 53:1 (2019), 84–87 | DOI | MR | Zbl

[2] Khabibullin B. N., Rozit A. P., “K raspredeleniyu nulevykh mnozhestv golomorfnykh funktsii”, Funkts. analiz i ego prilozheniya, 52:1 (2018), 26–42 | DOI | MR | Zbl

[3] Khabibullin B. N., Khabibullin F. B., “K raspredeleniyu nulevykh mnozhestv golomorfnykh funktsii. III. Teoremy obrascheniya”, Funkts. analiz i ego prilozheniya, 53:2 (2019), 42–58 | DOI | MR | Zbl

[4] Ransford Th., Potential Theory in the Complex Plane, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[5] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980 | MR

[6] Khabibullin B. N., Rozit A. P., Khabibullina E. B., “Poryadkovye versii Teoremy Khana–Banakha i ogibayuschie. II. Primeneniya v teorii funktsii”, Kompleksn. analiz. Matem. fizika, Itogi nauki i tekhn. Ser. Sovremen. matem. i ee prilozheniya. Temat. obz., 162, VINITI RAN, M., 2019, 93–135

[7] Arsove M. G., “Functions representable as differences of subharmonic functions”, Trans. Amer. Math. Soc., 75 (1953), 327–365 | DOI | MR | Zbl

[8] Khabibullin B. N., “Posledovatelnosti nulei golomorfnykh funktsii, predstavlenie meromorfnykh funktsii i garmonicheskie minoranty”, Matem. sb., 198:2 (2007), 121–160 | DOI | Zbl

[9] Gamelin T. W., Uniform Algebras and Jensen Measures, Cambridge Univ. Press, Cambridge, 1978 | MR | Zbl

[10] Khabibullin B. N., “Kriterii (sub-)garmonichnosti i prodolzhenie (sub-)garmonicheskikh funktsii”, Sib. matem. zhurn., 44:4 (2003), 905–925 | MR | Zbl

[11] Khabibullin B. N., Baiguskarov T. Yu., “Logarifm modulya golomorfnoi funktsii kak minoranta dlya subgarmonicheskoi funktsii”, Matem. zametki, 99:4 (2016), 588–602 | DOI | Zbl

[12] Baiguskarov T. Yu., Talipova G. R., Khabibullin B. N., “Podposledovatelnosti nulei dlya klassov tselykh funktsii eksponentsialnogo tipa, vydelyaemykh ogranicheniyami na ikh rost”, Algebra i analiz, 28:2 (2016), 1–33 | MR