Hypercomplex numbers in some geometries of two sets.~II
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 39-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main task of the theory of phenomenologically symmetric geometries of two sets is the classification of such geometries. In this paper, by complexing with associative hypercomplex numbers, functions of a pair of points of new geometries are found by the functions of a pair of points of some well-known phenomenologically symmetric geometries of two sets (PS of GTS). The equations of the groups of motions of these geometries are also found. The phenomenological symmetry of these geometries is established, that is, functional relationships are found between the functions of a pair of points for a certain finite number of arbitrary points. In particular, the $s$-component functions of a pair of points of the same ranks are determined by single-component functions of a pair of points of the PS of GTS ranks $(n,n)$ and $(n + 1,n)$. Finite equations of motion group and equation expressing their phenomenological symmetry are found.
Keywords: geometry of two sets, phenomenological symmetry, group symmetry, hyper-complex number.
@article{IVM_2020_5_a3,
     author = {V. A. Kyrov},
     title = {Hypercomplex numbers in some geometries of two {sets.~II}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {39--54},
     publisher = {mathdoc},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_5_a3/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - Hypercomplex numbers in some geometries of two sets.~II
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 39
EP  - 54
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_5_a3/
LA  - ru
ID  - IVM_2020_5_a3
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T Hypercomplex numbers in some geometries of two sets.~II
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 39-54
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_5_a3/
%G ru
%F IVM_2020_5_a3
V. A. Kyrov. Hypercomplex numbers in some geometries of two sets.~II. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 39-54. http://geodesic.mathdoc.fr/item/IVM_2020_5_a3/

[1] Mikhailichenko G. G., Muradov R. M., Fizicheskie struktury kak geometrii dvukh mnozhestv, Izd-vo GAGU, Gorno-Altaisk, 2008

[2] Mikhailichenko G. G., “Ob odnoi zadache v teorii fizicheskikh struktur”, Sib. matem. zhurn., 18:6 (1977), 1342–1355 | MR | Zbl

[3] Mikhailichenko G. G., Kyrov V. A., “Giperkompleksnye chisla v nekotorykh geometriyakh dvukh mnozhestv. I”, Izv. vuzov. Matem., 2017, no. 7, 19–29 | MR | Zbl

[4] Mikhailichenko G. G., “Reshenie funktsionalnykh uravnenii v teorii fizicheskikh struktur”, Dokl. AN. SSSR, 206:5 (1972), 1056–1058 | MR | Zbl

[5] Mikhailichenko G. G., Matematicheskii apparat teorii fizicheskikh struktur, Gorno-Altaisk, 1997

[6] Kantor I. L., Solodovnikov A. S., Giperkompleksnye chisla, Nauka, M., 1973

[7] Mikhailichenko G. G., Muradov R. M., “Giperkompleksnye chisla v teorii fizicheskikh struktur”, Izv. vuzov. Matem., 2008, no. 10, 25–30 | MR | Zbl

[8] Kostrikin A. I., Vvedenie v algebru, Nauka, M., 1977 | MR

[9] Mikhailichenko G. G., Gruppovye svoistve fizicheskikh struktur, Sib. matem. zhurn. Dep. v VINITI 10.03.89, No 1589-V89, 1989, 35 pp. | Zbl

[10] Mikhailichenko G. G., “Fenomenologicheskaya i gruppovaya simmetriya v geometrii dvukh mnozhestv (teorii fizicheskikh struktur)”, Dokl. AN SSSR, 284:1 (1985), 39–43 | MR | Zbl

[11] Kulakov Yu. I., Vladimirov Yu. S., Karnaukhov A. V., Vvedenie v teoriyu fizicheskikh struktur i binarnuyu geometricheskuyu fiziku, Izd-vo Arkhimed, M., 1992

[12] Vladimirov Yu. S., Relyatsionnaya teoriya prostranstva–vremeni i vzaimodeistvii, v. 2, Teoriya fizicheskikh vzaimodeistvii, Izd-vo MGU, M., 1998