Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_5_a1, author = {S. Benarab and E. S. Zhukovskiy}, title = {Coincidence points of two mappings acting from a partially ordered space to an arbitrary set}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {11--21}, publisher = {mathdoc}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_5_a1/} }
TY - JOUR AU - S. Benarab AU - E. S. Zhukovskiy TI - Coincidence points of two mappings acting from a partially ordered space to an arbitrary set JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 11 EP - 21 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_5_a1/ LA - ru ID - IVM_2020_5_a1 ER -
%0 Journal Article %A S. Benarab %A E. S. Zhukovskiy %T Coincidence points of two mappings acting from a partially ordered space to an arbitrary set %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2020 %P 11-21 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2020_5_a1/ %G ru %F IVM_2020_5_a1
S. Benarab; E. S. Zhukovskiy. Coincidence points of two mappings acting from a partially ordered space to an arbitrary set. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 11-21. http://geodesic.mathdoc.fr/item/IVM_2020_5_a1/
[1] Arutyunov A. V., Zhukovskiy E. S., Zhukovskiy S. E., “Coincidence points principle for mappings in partially ordered spaces”, Topology and its Appl., 179:1 (2015), 13–33 | DOI | MR | Zbl
[2] Arutyunov A. V., Zhukovskiy E. S., Zhukovskiy S. E., “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topology and its Appl., 201 (2016), 330–343 | DOI | MR | Zbl
[3] Arutyunov A. V., Zhukovskii E. S., Zhukovskii S. E., “O tochkakh sovpadeniya otobrazhenii v chastichno uporyadochennykh prostranstvakh”, Dokl. Akademii nauk, 453:5 (2013), 475–478 | DOI | Zbl
[4] Arutyunov A. V., Zhukovskii E. S., Zhukovskii S. E., “Tochki sovpadeniya mnogoznachnykh otobrazhenii v chastichno uporyadochennykh prostranstvakh”, Dokl. akademii nauk, 453:6 (2013), 595–598 | DOI | Zbl
[5] Arutyunov A. V., “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, Dokl. Akademii nauk, 416:2 (2007), 151–155 | Zbl
[6] Zhukovskii E. S., “Ob uporyadochenno nakryvayuschikh otobrazheniyakh i neyavnykh differentsialnykh neravenstvakh”, Differents. uravneniya, 52:12 (2016), 1610–1627 | DOI | MR
[7] Zhukovskii E. S., “Ob uporyadochenno nakryvayuschikh otobrazheniyakh i integralnykh neravenstvakh tipa Chaplygina”, Algebra i analiz, 30:1 (2018), 96–127
[8] Arutyunov A. V., Zhukovskiy E. S., Zhukovskiy S. E., “Caristi-Like Condition and the Existence of Minima of Mappings in Partially Ordered Spaces”, Journal of Optimization Theory and Appl., 180:1 (2018), 48–61 | DOI | MR
[9] Benarab S., Zhukovskii E. S., “Ob usloviyakh suschestvovaniya tochek sovpadeniya otobrazhenii v chastichno uporyadochennykh prostranstvakh”, Vestn. Tambovsk. un-ta. Ser. Estestven. i tekhnicheskie nauki. Tambov, 23:121 (2018), 10–16
[10] Benarab S., Zhukovskii E. S., “O nakryvayuschikh otobrazheniyakh so znacheniyami v prostranstve s refleksivnym binarnym otnosheniem”, Vestn. Tambovsk. un-ta. Ser. Estestven. i tekhnicheskie nauki. Tambov, 23:122 (2018), 210–215