Coincidence points of two mappings acting from a partially ordered space to an arbitrary set
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 11-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

A coincidence point of a pair of mappings is an element these mappings take the same values at. Coincidence points of mappings of partially ordered spaces are investigated by A.V. Arutyunov, E.S. Zhukovsky, S.E. Zhukovsky (see Topology and its Applications, 2015, V. 179, No. 1, p. 13–33); in particular, it was proved that an orderly covering mapping and a monotone mapping both acting from a partially ordered space into a partially ordered space possess a coincidence point. We consider the problem of existence of a coincidence point of a pair of mappings acting from a partially ordered space into a set, where no binary relation is defined, and, thus, it is impossible to determine the properties of covering and monotonicity of maps. In order to study such a problem, we define the notion of “quasi-coincidence” point, i.e. such element for which there exists an element not greater than the initial element such that the value of the first mapping at it is equal to the value of the second mapping at the initial element. It turns out that it is sufficient to require the following condition to be fulfilled for the existence of a coincidence point: any chain of “quasi-coincidence” points is bounded and has a lower boundary, which is also a point of “quasi-coincidence”. An example of mappings that satisfy the proposed conditions, but to which the results on coincidence points of the orderly covering and monotone mappings cannot be applied, is given in the article. An interpretation of the stability concept of a coincidence point of mappings with respect to their small perturbations in partially ordered space was proposed, and the conditions for such stability were obtained in the article.
Keywords: coincidence point, fixed point, partially ordered set, covering mapping, monotone mapping, stability of coincidence points with respect to small perturbations of the mappings.
@article{IVM_2020_5_a1,
     author = {S. Benarab and E. S. Zhukovskiy},
     title = {Coincidence points of two mappings acting from a partially ordered space to an arbitrary set},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {11--21},
     publisher = {mathdoc},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_5_a1/}
}
TY  - JOUR
AU  - S. Benarab
AU  - E. S. Zhukovskiy
TI  - Coincidence points of two mappings acting from a partially ordered space to an arbitrary set
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 11
EP  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_5_a1/
LA  - ru
ID  - IVM_2020_5_a1
ER  - 
%0 Journal Article
%A S. Benarab
%A E. S. Zhukovskiy
%T Coincidence points of two mappings acting from a partially ordered space to an arbitrary set
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 11-21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_5_a1/
%G ru
%F IVM_2020_5_a1
S. Benarab; E. S. Zhukovskiy. Coincidence points of two mappings acting from a partially ordered space to an arbitrary set. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 11-21. http://geodesic.mathdoc.fr/item/IVM_2020_5_a1/

[1] Arutyunov A. V., Zhukovskiy E. S., Zhukovskiy S. E., “Coincidence points principle for mappings in partially ordered spaces”, Topology and its Appl., 179:1 (2015), 13–33 | DOI | MR | Zbl

[2] Arutyunov A. V., Zhukovskiy E. S., Zhukovskiy S. E., “Coincidence points principle for set-valued mappings in partially ordered spaces”, Topology and its Appl., 201 (2016), 330–343 | DOI | MR | Zbl

[3] Arutyunov A. V., Zhukovskii E. S., Zhukovskii S. E., “O tochkakh sovpadeniya otobrazhenii v chastichno uporyadochennykh prostranstvakh”, Dokl. Akademii nauk, 453:5 (2013), 475–478 | DOI | Zbl

[4] Arutyunov A. V., Zhukovskii E. S., Zhukovskii S. E., “Tochki sovpadeniya mnogoznachnykh otobrazhenii v chastichno uporyadochennykh prostranstvakh”, Dokl. akademii nauk, 453:6 (2013), 595–598 | DOI | Zbl

[5] Arutyunov A. V., “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, Dokl. Akademii nauk, 416:2 (2007), 151–155 | Zbl

[6] Zhukovskii E. S., “Ob uporyadochenno nakryvayuschikh otobrazheniyakh i neyavnykh differentsialnykh neravenstvakh”, Differents. uravneniya, 52:12 (2016), 1610–1627 | DOI | MR

[7] Zhukovskii E. S., “Ob uporyadochenno nakryvayuschikh otobrazheniyakh i integralnykh neravenstvakh tipa Chaplygina”, Algebra i analiz, 30:1 (2018), 96–127

[8] Arutyunov A. V., Zhukovskiy E. S., Zhukovskiy S. E., “Caristi-Like Condition and the Existence of Minima of Mappings in Partially Ordered Spaces”, Journal of Optimization Theory and Appl., 180:1 (2018), 48–61 | DOI | MR

[9] Benarab S., Zhukovskii E. S., “Ob usloviyakh suschestvovaniya tochek sovpadeniya otobrazhenii v chastichno uporyadochennykh prostranstvakh”, Vestn. Tambovsk. un-ta. Ser. Estestven. i tekhnicheskie nauki. Tambov, 23:121 (2018), 10–16

[10] Benarab S., Zhukovskii E. S., “O nakryvayuschikh otobrazheniyakh so znacheniyami v prostranstve s refleksivnym binarnym otnosheniem”, Vestn. Tambovsk. un-ta. Ser. Estestven. i tekhnicheskie nauki. Tambov, 23:122 (2018), 210–215