The optimal feedback control problem for Voigt model with variable density
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2020), pp. 93-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the study of weak solvability of the optimal feedback control problem for the Voigt model with variable density. The proof is based on the approximation-topological approach. First, the solvability of the approximation problem is proved, and then, based on a priori estimates that are independent of the approximation parameter, it is shown that from the sequence of solutions of the approximation problem, a subsequence converging to the solution of the original problem can be chosen. Then it is shown that among weak solutions to the problem there is at least one that gives a minimum to a given cost functional.
Keywords: optimal control problem, feedback, weak solution, approximation-topological approach, nonhomogeneous fluid, variable-density fluid.
Mots-clés : Voigt model
@article{IVM_2020_4_a8,
     author = {V. G. Zvyagin and M. V. Turbin},
     title = {The optimal feedback control problem for {Voigt} model with variable density},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {93--98},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_4_a8/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - M. V. Turbin
TI  - The optimal feedback control problem for Voigt model with variable density
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 93
EP  - 98
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_4_a8/
LA  - ru
ID  - IVM_2020_4_a8
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A M. V. Turbin
%T The optimal feedback control problem for Voigt model with variable density
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 93-98
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_4_a8/
%G ru
%F IVM_2020_4_a8
V. G. Zvyagin; M. V. Turbin. The optimal feedback control problem for Voigt model with variable density. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2020), pp. 93-98. http://geodesic.mathdoc.fr/item/IVM_2020_4_a8/

[1] Filippov A.F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. Moskovsk. un-ta. Ser. matem., mekhan., astronomiya, fiz., khimiya, 2 (1959), 25–32 | Zbl

[2] Aubin J.-P., Cellina A., Differential Inclusions, Springer-Verlag, Berlin, 1984 | MR | Zbl

[3] Kamenskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter, Berlin–New York, 2001 | MR | Zbl

[4] Zvyagin V., Obukhivskii V., Zvyagin A., “On inclusions with multivalued operators and their applications to some optimization problems”, J. Fixed Theory and Appl., 16:1–2 (2014), 27–82 | DOI | MR | Zbl

[5] Zvyagin V.G., Zvyagin A.V., Turbin M.V., “Optimalnoe upravlenie s obratnoi svyazyu dlya modeli Bingama s periodicheskimi usloviyami po prostranstvennym peremennym”, Zap. nauchn. sem. POMI, 477, 2018, 54–86

[6] Zvyagin V.G., Turbin M.V., “Optimal Feedback Control in the Mathematical Model of Low Concentrated Aqueous Polymer Solutions”, J. Optim. Theory and Appl., 148:1 (2011), 146–163 | DOI | MR | Zbl

[7] Plotnikov P.I., Turbin M.V., Ustyuzhaninova A.S., “Teorema suschestvovaniya slabogo resheniya zadachi optimalnogo upravleniya s obratnoi svyazyu dlya modifitsirovannoi modeli Kelvina–Foigta slabo kontsentrirovannykh vodnykh rastvorov polimerov”, Dokl. Akademii Nauk, 488:2 (2019), 133–136 | DOI | Zbl

[8] Zvyagin V.G., Turbin M.V., “Optimalnoe upravlenie s obratnoi svyazyu dvizheniem sredy Bingama s periodicheskimi usloviyami po prostranstvennym peremennym”, Dokl. Akademii Nauk, 485:2 (2019), 139–141 | DOI | Zbl

[9] Kazhikhov A.V., “Razreshimost nachalno-kraevoi zadachi dlya uravnenii dvizheniya neodnorodnoi vyazkoi neszhimaemoi zhidkosti”, DAN SSSR, 216:5 (1974), 1008–1010 | Zbl

[10] Lions P.-L., Mathematical topics in fluid mechanics, v. 1, Incompressible Models, Clarendon Press, Oxford, 1996 | MR | Zbl

[11] Simon J., “Nonhomogeneous viscous incompressible fluids: existence of velocity, density and pressure”, SIAM J. Math. Anal., 21:5 (1990), 1093–1117 | DOI | MR | Zbl

[12] Antontsev S.N., de Oliveira H.B., Khompysh Kh., “Existence and large time behavior for generalized Kelvin-Voigt equations governing nonhomogeneous and incompressible fluids”, IOP Conf. Series: J. Physics: Conf. Ser., 1268 (2019), 012008 | DOI | MR

[13] Ladyzhenskaya O.A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, GIFML, M., 1961

[14] Solonnikov V.A., “Ob otsenkakh tenzorov Grina dlya nekotorykh granichnykh zadach”, DAN SSSR, 130:5 (1960), 988–991 | MR | Zbl

[15] Vorovich I.I., Yudovich V.I., “Statsionarnye techeniya vyazkoi neszhimaemoi zhidkosti”, Matem. sb., 53:4 (1961), 393–428

[16] Zvyagin V.G., Turbin M.V., Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND (URSS), M., 2012

[17] Fursikov A.V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchn. kn., Novosibirsk, 1999